• Title/Summary/Keyword: Traffic-related pollutants

Search Result 37, Processing Time 0.02 seconds

A Study on the Variation of Air Pollutants Emission Rates for Different Traffic Signal System in Metropolitan Area (대도시 교통신호시스템에 따른 대기오염물질 배출량 변화에 관한 연구)

  • 홍민선;우완기;최종인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.93-100
    • /
    • 1993
  • This study was carried out to investigate the relationship between the traffic signal systmes and the air pollutants emitted by the motor vehicles at Kangnam Intersection. One of the most important measures of effectiveness (MOE) in traffic studies is the delay to vehicles in the system. Delay represents indirect costs to the motorist in terms of time loss and a direct cost in terms of fuel consumption during idling. The results of TRANSYT-7F modeling was correlated among delay, fuel consumption and total travel tiem. Air pollutants emission rate can be calculated by the results of modeling and the Korean type emission factor. As expected the highest emissions, for air pollutants, are observed during the morning rush hours (07 : 00-10 : 00). For better results of modeling, the TRANSYT-7F model needs to modify for the Korean type of traffic model. The results of this study indicate that the variation of air pollutants emission rates were closely related to the traffic signal system.

  • PDF

Land Use Regression Model for Assessing Exposure and Impacts of Air Pollutants in School Children (Land Use Regression 모델을 이용한 수도권 초등학교 대기오염 노출 분석)

  • Lee, Ji-Young;Leem, Jong-Han;Kim, Hwan-Cheol;Hwang, Seung-Sik;Jung, Dal-Young;Park, Myung-Sook;Kim, Jung-Ae;Lee, Je-Joon;Park, No-Wook;Kang, Sung-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.571-580
    • /
    • 2012
  • Epidemiologic studies of air pollution need accurate exposure assessments at unmonitored locations. A land use regression (LUR) model has been used successfully for predicting traffic-related pollutants, although its application has been limited to Europe, North America, and a few Asian region. Therefore, we modeled traffic-related pollutants by LUR then examined whether LUR models could be constructed using a regulatory monitoring network in Metropolitan area in Korea. We used the annual-mean nitrogen dioxide ($NO_2$) in 2010 in the study area. Geographic variables that are considered to predict traffic-related pollutants were classified into four groups: road type, traffic intensity, land use, and elevation. Using geographical variables, we then constructed a model to predict the monitored levels of $NO_2$. The mean concentration of $NO_2$ was 30.71 ppb (standard deviation of 5.95) respectively. The final regression model for the $NO_2$ concentration included five independent variables. The LUR models resulted in $R^2$ of 0.59. The mean concentration of $NO_2$ of elementary schools was 34.04 ppb (standard deviation of 5.22) respectively. The present study showed that even if we used regulatory monitoring air quality data, we could estimate $NO_2$ moderately well. These analyses confirm the validity of land use regression modeling to assign exposures in epidemiological studies, and these models may be useful tools for assessing health effects of long-term exposure to traffic related pollution.

Vehicle-related Fine Particulate Air Pollution in Seoul, Korea

  • Bae, Gwi-Nam;Lee, Seung-Bok;Park, Su-Mi
    • Asian Journal of Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Vehicle exhaust is a dominant source of air pollutants in urban areas. Since people are easily exposed to vehicle exhaust particles while driving a car and/or traveling via public transportation, air pollution near traffic has been extensively studied in developed countries. In this paper, investigations on vehicle-related fine particulate air pollution at roadsides and on roads in Seoul, Korea were reviewed to understand air pollution near traffic. Comparison of $PM_{10}$ concentrations in Seoul showed that roadside air is more contaminated than urban air, implying that exposure levels near vehicular emissions are more critical to sensitive persons. Concentrations of ultrafine particles and BC (black carbon) at roadsides of Seoul fluctuate highly for short durations, responding to traffic situations. Diurnal variations of ultrafine particles and BC concentrations at roadsides seem to be affected by traffic volume, mixing layer height, and wind speed. Concentrations of ultrafine particles and BC decrease as distance from the road increases due to dilution during transport. On-road air pollution seems to be more severe than roadside air pollution in Seoul. Since nearby traffic air pollution has not been well understood in Seoul, further studies including various vehicular air pollutants and representative locations are needed.

Estimation of Link-Based Traffic-Related Air Pollutant Emissions and the Exposure Intensity on Pedestrian Near Busy Streets (유동인구 밀집지역 인근의 도로구간별 배출량 산정 및 보행자 노출 강도 평가)

  • Lee, Sangeun;Shin, Myunghwan;Lee, Seokjoo;Hong, Dahee;Jang, Dongik;Keel, Jihoon;Jung, Taekho;Lee, Taewoo;Hong, Youdeog
    • Journal of ILASS-Korea
    • /
    • v.23 no.2
    • /
    • pp.81-89
    • /
    • 2018
  • The objective of this study is to estimate the level of exposure of traffic-related air pollutants (TRAPs) on the pedestrians in Seoul area. The road network's link-based pollutant emission was calculated by using a set of mobile source emission factor package and associated activity information. The population information, which is the number of pedestrian, was analyzed in conjunction with the link-based traffic emissions in order to quantify exposure level by selected 23 spots. We proposed the Exposure Intensity, which is defined by the amount of traffic emission and the population, to quantify the probability of exposure of pedestrian. Link-based traffic NOx and PM emissions vary by up to four times depending on the location of each spot. The Hot-spots is estimated to be around 1.8 times higher Exposure Intensity than the average of the 23 selected spots. The information of Exposure Intensity of each spot allows us to develop localized policies for air quality and health. Even in the same area, the Exposure Intensity over time also shows a large fluctuation, which gives suggestions for establishing site-specific counter-measures.

Modeling Study on Dispersion and Scavenging of Traffic Pollutants at the Location Near a Busy Road

  • Ma, Chang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.272-279
    • /
    • 2015
  • The information about the dispersion and scavenging of traffic-related pollutants at the locations near busy expressways is very helpful to highway planners for developing better plans to reduce exposures to air pollution for people living as well as children attending schools and child care centers near roadways. The objective of the current study was to give information in the dispersion and scavenging of vehicle-derived pollutants at the region near a busy urban expressway by a combination of two different model calculations. The modified Gaussian dispersion model and the Lagrange type below-cloud scavenging model were applied to evaluate $NO_x$ dispersion and DEP (Diesel exhaust particles) wet removal, respectively. The highest $NO_x$ was marked 53.17 ppb within 20-30 meters from the target urban expressway during the heaviest traffic hours (08:00AM-09:00AM) and it was 2.8 times higher than that of really measured at a nearby ambient measuring station. The calculated DEP concentration in size-resolved raindrops showed a continuous decreasing with increasing raindrop size. Especially, a noticeable decrease was found between 0.2 mm and 1.0 mm raindrop diameter.

Analysis of the Association between Air Pollutant Distribution and Mobile Sources in Busan Using Spatial Analysis (공간 분석을 통한 부산광역시 대기오염물질의 분포와 이동오염원 간의 관련성 연구)

  • Jae-Hee Min;Byoung-Gwon Kim;Hyunji Ju;Na-Young Kim;Yong-Sik Hwang;Seungho Lee;Young-Seoub Hong
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.3
    • /
    • pp.191-200
    • /
    • 2024
  • Background: Busan is a rapidly industrializing city with many mixed residential and industrial areas. Fine dust emissions from mobile pollution sources such as ships and vehicles are particularly high in Busan. Objectives: This study analyzed the spatial distribution of air pollutants over the past three years and identified the impact of air pollutants through mobile source data in Busan. Methods: We obtained air pollutant data on fine particulate matter (PM10), ultrafine particulate matter (PM2.5), nitrogen dioxide (NO2), sulfurous acid gas (SO2), and ozone (O3) for the last three years (source: airkorea.or.kr) and analyzed the spatial distribution using SAS 9.4 and Surfer 23. For the mobile pollutant data, we used CCTV data from major intersections in Busan to identify truck and car traffic, and visualized traffic density with QGIS. Results: The analysis of the concentration of air pollutants over three years (2020~2022) showed that all were lower than the annual environmental standards with the exception of PM2.5. PM10 and PM2.5 were found to be highly concentrated in the western part of the area, while NO2 was high in the port area of Busan and SO2 was high in the western part of the area and near the new port of Busan. In the case of O3, it was high in the eastern part of the city. The traffic volume of freight vehicles by intersection was concentrated in the West Busan area, and the traffic volume for all cars was also confirmed to be concentrated at "Mandeok Intersection" located in the West Busan area. Conclusions: This study was conducted to determine the relationship between air pollutants emitted from motor vehicles and the distribution of air pollutants in Busan. The spatial distribution of PM10 and PM2.5 correlates with traffic volume, while high concentrations of SO2 and NO2 near the port are associated with ship emissions.

Quantification of Turbulence Characteristics on the Concentration Distributions of Traffic-related Pollutants Near Roadways (도로변 난류특성과 교통량에 따른 차량유발 난류강도 정량화: 도로변 풍상/풍하 측에서의 3차원 풍속 동시 측정에 기반)

  • Yongmi Park;Subin Han;HanGyeol Song;Seung-Bok Lee;Kyung-Hwan Kwak;Changhyuk Kim;Wonsik Choi
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.343-354
    • /
    • 2023
  • Turbulence produced on roadways is one of the major factors determining the dilution rates at the initial stage of traffic emissions of air pollutants and, thus, the distribution of air pollutants near the roadways. Field experiments were conducted on Gyeongbu Highway, one of the busiest highways in Korea, for 4~7 days in winter, spring, and summer. Two three-dimensional ultrasonic anemometers were installed on both sides of the highway to estimate turbulence intensities (vertical wind fluctuation and kinetic turbulence energy) induced by the roadway. Roadway-induced turbulence consists of three components: structural road-induced turbulence (S-RIT), thermal road-induced turbulence (T-RIT), and vehicle-induced turbulence (VIT). The contribution of T-RIT to the total RIT was insignificant (less than 10%), and the majority of RIT was S-RIT (by the highway embankment) and VIT. In this study, we propose the empirical relationships of VIT as a function of traffic density and wind speed under free-flow traffic conditions. Although this empirical relationship appears to underestimate the VIT, it can be applied to the air quality models easily because the relationship is simple and only needs readily obtainable input variables (wind speed and traffic information).

Ambient Fine and Ultrafine Particle Measurements and Their Correlations with Particulate PAHs at an Elementary School Near a Highway

  • Song, Sang-Hwan;Paek, Do-Myung;Lee, Young-Mee;Lee, Chul-Woo;Park, Chung-Hee;Yu, Seung-Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.96-103
    • /
    • 2012
  • Ambient particulate matter (PM) and particle-bound polycyclic aromatic hydrocarbon (PAH) concentrations were measured continuously for 70 days at a Korean elementary school located near a highway. The $PM_{10}$, $PM_{2.5}$, and $PM_1$ values were measured with a light-scattering, multi-channel, aerosol spectrometer (Grimm, Model 1.107). The number concentrations of the particles were measured using a scanning mobility particle sizer and counter (SMPS+C) which counted particles from 11.1 to 1083.3 nm classified in 44 channels. Particle-bound PAHs were measured with a direct reading, photoelectric aerosol sensor. The daily $NO_2$, $SO_2$, and CO concentrations were obtained from a national air-monitoring station located near the school. The average concentrations of $PM_{10}$, $PM_{2.5}$, and $PM_1$ were 75.3, 59.3, and $52.1{\mu}g/m^3$, respectively. The average number concentration of the ultrafine particles (UFPs) was $46,307/cm^3$, and the averaged particle-bound PAHs concentration was $17.9ng/cm^3$ during the study period. The ambient UFP variation was strongly associated with traffic intensity, particularly peak concentrations during the traffic rush hours. Particles <100 nm corresponded to traffic-related pollutants, including PAHs. Additional longterm monitoring of ambient UFPs and high-resolution traffic measurements should be carried out in future studies. In addition, transient variations in the ambient particle concentration should be taken into consideration in epidemiology studies in order to examine the short-term health effects of urban UFPs.

Spacio-temporal Analysis of Urban Population Exposure to Traffic-Related air Pollution (교통흐름에 기인하는 미세먼지 노출 도시인구에 대한 시.공간적 분석)

  • Lee, Keum-Sook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.59-77
    • /
    • 2008
  • The purpose of this study is to investigate the impact of traffic-related air pollution on the urban population in the Metropolitan Seoul area. In particular, this study analyzes urban population exposure to traffic-related particulate materials(PM). For the purpose, this study examines the relationships between traffic flows and PM concentration levels during the last fifteen years. Traffic volumes have been decreased significantly in recent year in Seoul, however, PM levels have been declined less compare to traffic volumes. It may be related with the rapid growth in the population and vehicle numbers in Gyenggi, the outskirt of Seoul, where several New Towns have been developed in the middle of 1990's. The spatial pattern of commuting has changed, and thus and travel distances and traffic volumes have increased along the main roads connecting CBDs in Seoul and New Towns consisting of large residential apartment complexes. These changes in traffic flows and travel behaviors cause increasing exposure to traffic-related air pollution for urban population over the Metropolitan Seoul area. GIS techniques are applied to analyze the spatial patterns of traffic flows, population distributions, PM distributions, and passenger flows comprehensively. This study also analyzes real time base traffic flow data and passenger flow data obtained from T-card transaction database applying data mining techniques. This study also attempts to develop a space-time model for assessing journey-time exposure to traffic related air pollutants based on travel passenger frequency distribution function. The results of this study can be used for the implications for sustainable transport systems, public health and transportation policy by reducing urban air pollution and road traffics in the Metropolitan Seoul area.

  • PDF

Association between traffic-related environmental factors and allergy symptoms for children

  • LEE, Hyo-Sun;Han, Seong-Min;Kim, So-Yeun
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.137-143
    • /
    • 2020
  • Traffic-related environmental factors (TREF) are a major problem in developed countries, leading to increased atopic sensitivity, allergy symptoms, and diseases. This study shows an association between traffic-related pollutants, distance of road and gas station from the children's daycare center, and allergy symptoms. Data was obtained from the 2018 survey, an ongoing allergic diseases prevalence survey for children aged 4-7 (n=1175). This survey considered 36 public daycare centers, across 6 districts in Seoul. Allergic symptoms were defined as the presence of at least 1 or more allergic diseases (International Study of Asthma and Allergies in Childhood (ISAAC)). TREF was derived from the distance to the nearest main roads and gas stations. Geographic data processing and variable computation were conducted using ArcGIS version 10.2. The odds ratios for allergy symptoms increased by 1.189 (1.235-2.679) times with decreasing distance to main roads and by 1.846 (1.176-2.896) times with decreasing distance to a gas station. This study concludes that main roads and gas-stations near children's daycare centers are related to the allergy symptoms in children.