• 제목/요약/키워드: Traffic prediction

검색결과 698건 처리시간 0.02초

WEB 기반 교통사고 분석 (Analysis System for Traffic Accident based on WEB)

  • 홍유식;한창평
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권6호
    • /
    • pp.13-20
    • /
    • 2022
  • 겨울철 도로에서 발생하는 안개 및 결빙구간 교통사고 사망률의 경우는 도로조건 및 기상조건이 매우 중요한 요소 이다. 본 논문에서는 교통사고 예측 데이터를 가정하고 교통사고 위험율을 에측 하는 모의실험을 수행하였다. 그뿐만 아니라, 본 논문에서는 교통사고를 줄이고 교통사고를 예방하기 위해서, 교통공단에서 제공하는 교통사고 사망자 데이터를 WEKA 데이터 마이닝 기법 및 TENSOR FLOW 공개 소스를 이용해서 요인 분석 및 교통사고 치사율 사망을 예측하였다. 추가적인 기능으로는 지도 표시 기능을 이용해서, 운전자가 WEB 기반에서, 안개 및 결빙구간 정보를 운전자에게 제공하는 모의실험 및 교통사고 사진을 실시간으로 전송하는 모의실험 결과를 설명하였다.

전자상거래 시스템의 트래픽량 예측에 관한 연구 (A Study on Traffic Volume Prediction for e-Commerce Systems)

  • 김정수
    • 정보처리학회논문지C
    • /
    • 제18C권1호
    • /
    • pp.31-44
    • /
    • 2011
  • 네트워크 기반의 적절한 컴퓨팅은 네트워크 대역폭의 가용성에 의존한다. 백본 네트워크 용량과 액세스 네트워크 상에 심각한 버틀넥이 발생하여 ISP 사업자와 고객 간의 갭이 발생된다면 그만큼 ISP 사업자는 사업에 불이익을 초래할 수 있다. 이러한 상황이 발생되기 이전 ISP 사업자가 트래픽량 예측과 종단간 오버로드가 높은 링크 구간을 감지할 수 있다면 ISP 사업자와 고객 간의 갭은 그만큼 줄어 들 수 있을 것으로 판단된다. 따라서 본 논문은 트래픽량 예측과 종단간 오버로드가 높은 링크 구간을 감지 가능한 소프트웨어로 ACE, ADM, Flow Analysis를 소개한다. 이들 툴을 이용하여 전자상거래의 연속적인 트랜잭션을 실망에서 측정한 후 측정된 네트워크 데이터를 가상 망 환경에 임포트하고 백그라운드 트래픽을 생성한다. 이와 같은 가상 망 환경을 토대로 점차적인 사용자 수 증가에 따른 트래픽량 예측과 링크 로드가 높은 구간을 시뮬레이션 결과로 알 수 있었다.

공간통계기법을 이용한 도시 교통량 예측의 정확성 향상 (A Geostatistical Approach for Improved Prediction of Traffic Volume in Urban Area)

  • 김호용
    • 한국지리정보학회지
    • /
    • 제13권4호
    • /
    • pp.138-147
    • /
    • 2010
  • 부정확한 교통량 예측은 잘못된 교통계획 및 설계를 초래할 수 있으므로, 교통량 데이터를 이용한 교통량 예측은 교통계획 및 운영과 같은 공간의사결정과정에서 매우 중요하다. 교통량 예측의 정확도 향상을 위해 최근 공간통계분석방법인 크리깅 방법론을 이용한 연구들이 발표되고 있으며, 연구결과 기존의 전통적인 방법에 비하여 예측력이 높게 나타났다. 이에 본 연구는 먼저 미국 미주리 주의 세인트루이스를 대상으로 크리깅 분석방법론을 이용하여 교통량 데이터를 예측한 후 실제 측정값과 비교하여 그 정확도를 검증하였다. 이후 크리깅 방법론의 예측 값을 더욱 향상 시키기 위한 새로운 방안을 제시하였다. 그 방안으로 첫째, 베리오그램 인자 결정시 나타난 교통량 데이터의 특징인 이방성을 적용하였으며, 둘째, 교통량 데이터의 공간적 상관관계가 높은 주간고속도로를 이차변수로 설정하여 공동크리깅 분석을 실시하였다. 분석결과 일반 크리깅 방법보다 이방성을 적용한 분석에서 더욱 높은 정확도 나타났으며, 이방성의 적용 하에 실시한 공동크리깅의 결과에서 가장 좋은 예측 값이 나타났다.

ISP의 OTT 트래픽 품질모니터링과 예측에 관한 연구 (A Study on the Quality Monitoring and Prediction of OTT Traffic in ISP)

  • 남창섭
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권2호
    • /
    • pp.115-121
    • /
    • 2021
  • 본 논문은 급증하는 인터넷 트래픽예측을 위해 빅데이터와 인공지능기술을 이용하였다. 기존에 트래픽 예측에 관해 다양한 연구가 있었지만 최근 스마트폰이나 스트리밍 등 거대한 인터넷 트래픽을 유발하는 증가 요소를 반영하지는 못했다. 더불어 대용량 인기 게임 출시나 OTT(Over the Top)사업자의 신규 컨텐츠 제공과 같은 이벤트성 요소는 사전 예측이 더욱 어렵다. 이러한 특성으로 기존 방법으로는 ISP(Internet Service Provider)가 실시간적 서비스 품질관리나 트래픽 예측치를 네트워크 사업환경에 반영하기가 불가능하였다. 따라서 본 연구에서는 이러한 문제점을 해결하고자 기존 NMS와는 별개로 트래픽 데이터를 실시간적으로 탐색, 판별하여 수집하는 인터넷 트래픽 수집시스템을 구축하였다. 이를 통해 수집대상의 데이터를 자동등록할 수 있는 유연성과 탄력성을 확보하였으며 실시간 네트워크 품질모니터링을 가능하게 하였다. 또한 시스템에서 수집된 대량의 트래픽 데이터를 머신러닝(AI)으로 분석하여 OTT 사업자의 미래 트래픽을 예측하였다. 이를 통해 보다 과학적이고 체계적인 예측이 가능해졌으며 더불어 ISP 사업자 간의 연동 최적화와 대형 OTT 서비스의 품질확보가 가능할 수 있게 되었다.

단지내 공동주택에서의 경관을 고려한 도로소음 분석 (Analysis of Traffic Noise Considering Landscape at High-storied Apartment in Residential Complex)

  • 박영민;최진권;김경인;고정용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.917-920
    • /
    • 2005
  • This study was performed for make the plan of large residential zone considering reduction of the traffic noise and landscape, to meet the demand of resident who pursuit the amenity. For the first time, suitable traffic noise prediction model was selected and modified. Also, quantitative analysis of the traffic noise reductor was performed. These results are utilized plan of large residential zone efficiently.

  • PDF

시변비선형 특성을 지닌 ATM 통화유량 예측 모델링 (The Prediction Modelling of Traffic Flow with Time-Variable Non-Linear Characteristic in ATM Network)

  • 김윤석
    • 한국통신학회논문지
    • /
    • 제25권9A호
    • /
    • pp.1299-1305
    • /
    • 2000
  • 도래할 B-ISDN 환경하에서 중추적 역할을 할 ATM의 실현을 위해서는 다중매체의 통화유량을 최적하에 제어할 수 있는 방법이 제시되어야 한다. 그러나 다중매체 통화유량의 특성이 완전히 밝혀지지 못한 상태에서 ATM의 제어, 특히 최적한 폭주제어의 실현은 난제로 남아있다. 그러므로 본 논문에서는 다중매체 통화유량 모델을 시변비선형함수라 가정하고 이를 실시간 추정하기 위해 병렬로 연결된 3중의 신경망 모델을 제시하며 모의실험을 통해 시변비선형함수를 추정하여 ATM의 폭주제어에 이용될 수 있는 가능성을 보인다.

  • PDF

Intelligent Traffic Prediction by Multi-sensor Fusion using Multi-threaded Machine Learning

  • Aung, Swe Sw;Nagayama, Itaru;Tamaki, Shiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권6호
    • /
    • pp.430-439
    • /
    • 2016
  • Estimation and analysis of traffic jams plays a vital role in an intelligent transportation system and advances safety in the transportation system as well as mobility and optimization of environmental impact. For these reasons, many researchers currently mainly focus on the brilliant machine learning-based prediction approaches for traffic prediction systems. This paper primarily addresses the analysis and comparison of prediction accuracy between two machine learning algorithms: Naïve Bayes and K-Nearest Neighbor (K-NN). Based on the fact that optimized estimation accuracy of these methods mainly depends on a large amount of recounted data and that they require much time to compute the same function heuristically for each action, we propose an approach that applies multi-threading to these heuristic methods. It is obvious that the greater the amount of historical data, the more processing time is necessary. For a real-time system, operational response time is vital, and the proposed system also focuses on the time complexity cost as well as computational complexity. It is experimentally confirmed that K-NN does much better than Naïve Bayes, not only in prediction accuracy but also in processing time. Multi-threading-based K-NN could compute four times faster than classical K-NN, whereas multi-threading-based Naïve Bayes could process only twice as fast as classical Bayes.

DeepPTP: A Deep Pedestrian Trajectory Prediction Model for Traffic Intersection

  • Lv, Zhiqiang;Li, Jianbo;Dong, Chuanhao;Wang, Yue;Li, Haoran;Xu, Zhihao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권7호
    • /
    • pp.2321-2338
    • /
    • 2021
  • Compared with vehicle trajectories, pedestrian trajectories have stronger degrees of freedom and complexity, which poses a higher challenge to trajectory prediction tasks. This paper designs a mode to divide the trajectory of pedestrians at a traffic intersection, which converts the trajectory regression problem into a trajectory classification problem. This paper builds a deep model for pedestrian trajectory prediction at intersections for the task of pedestrian short-term trajectory prediction. The model calculates the spatial correlation and temporal dependence of the trajectory. More importantly, it captures the interactive features among pedestrians through the Attention mechanism. In order to improve the training speed, the model is composed of pure convolutional networks. This design overcomes the single-step calculation mode of the traditional recurrent neural network. The experiment uses Vulnerable Road Users trajectory dataset for related modeling and evaluation work. Compared with the existing models of pedestrian trajectory prediction, the model proposed in this paper has advantages in terms of evaluation indicators, training speed and the number of model parameters.

Temperature distribution prediction in longitudinal ballastless slab track with various neural network methods

  • Hanlin Liu;Wenhao Yuan;Rui Zhou;Yanliang Du;Jingmang Xu;Rong Chen
    • Smart Structures and Systems
    • /
    • 제32권2호
    • /
    • pp.83-99
    • /
    • 2023
  • The temperature prediction approaches of three important locations in an operational longitudinal slab track-bridge structure by using three typical neural network methods based on the field measuring platform of four meteorological factors and internal temperature. The measurement experiment of four meteorological factors (e.g., ambient temperature, solar radiation, wind speed, and humidity) temperature in the three locations of the longitudinal slab and base plate of three important locations (e.g., mid-span, beam end, and Wide-Narrow Joint) were conducted, and then their characteristics were analyzed, respectively. Furthermore, temperature prediction effects of three locations under five various meteorological conditions are tested by using three neural network methods, respectively, including the Artificial Neural Network (ANN), the Long Short-Term Memory (LSTM), and the Convolutional Neural Network (CNN). More importantly, the predicted effects of solar radiation in four meteorological factors could be identified with three indicators (e.g., Root Means Square Error, Mean Absolute Error, Correlation Coefficient of R2). In addition, the LSTM method shows the best performance, while the CNN method has the best prediction effect by only considering a single meteorological factor.

화물차사고 비율에 따른 고속도로 교통사고 분석모형에 대한 연구 (A Study of Traffic Accident Analysis Model on Highway in Accordance with the Accident Rate of Trucks)

  • Yang, Sung-Ryong;Yoon, Byoung-jo;Ko, Eun-Hyeok
    • 한국재난정보학회 논문집
    • /
    • 제13권4호
    • /
    • pp.570-576
    • /
    • 2017
  • 고속도로에서 화물차는 승용차에 비해 도로의 많은 부분을 점유한다. 이로 인해 도로의 용량은 상대적으로 감소하며, 국소적으로 주변 운전자에게 위협적인 요소로 작용한다. 화물차 사고는 일반적인 사고와 달리 사고 특성이 다르므로 분석 방법 또한 일반적인 사고와 다르게 적용해야 한다. 사고 분석 방법 중 사고예측모형은 특정 구간에 대한 사고건수를 예측하며 교통계획을 수립할 때 사고 예방을 위한 대책 수립과 도로의 위험성을 진단할 때 활용된다. 이에 본 연구는 고속도로의 화물차 간 사고 비율을 적용하여 사고예측모형에 투입될 수 있는 보정계수를 산출하는 것을 목적으로 한다. 연구를 위해 고속도로를 대상으로 사고 자료를 수집하였으며 2014~2016년까지 3개 년도의 교통량 및 사고 자료를 활용하였다. 연간 사고건수를 토대로 사고예측모형을 개발하였으며, 본 연구를 통해 화물차 간 사고 비율에 따른 사고예측모형을 비교함으로써 실질적인 고속도로 사고예측모형을 확인하고 그에 대한 대책을 제시하고자 한다.