• 제목/요약/키워드: Traffic forecasting data

Search Result 116, Processing Time 0.025 seconds

A Computer Simulation Model for Container Terminal Systems (컨테이너항 전산 모의실험 모형의 개발)

  • Jo, Deok-Un
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.11 no.2
    • /
    • pp.173-187
    • /
    • 1985
  • A computer simulation model for optimum design and determination of optimal operational parameter values for modern container terminal systems was developed through the use of GASP-IV, a subset of SLAM. Input data reflecting current system configuration and operational practices at Pusan container terminal was used to test the model, which resulted in its validation. Possibilities for application of the model in areas of candidate system comparisons, operational parameter testing and forecasting operational performance under future traffic situations, are explained.

  • PDF

Forecasting of Real Time Traffic Situation using Neural Network and Sensor Database Management System (신경망과데이터베이스 관리시스템을 이용한 실시간 교통상황 예보)

  • Jin, Hyun-Soo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.248-250
    • /
    • 2008
  • This paper proposes a prediction method to prevent traffic accident and reduce to vehicle waiting time using neural network. Computer simulation results proved reducing average vehicle waiting time which proposed coordinating green time better than electro-sensitive traffic light system dose not consider coordinating green time. Moreover, we present neural network approach for traffic accident prediction with unnormalized (actual or original collected) data. This approach is not consider the maximum value of data and possible use the network without normalizing but the predictive accuracy is better. Also, the unnormalized method shows better predictive accuracy than the normalized method given by maximum value. Therefore, we can make the best use of this model in software reliability prediction using unnormalized data. Computer simulation results proved reducing traffic accident waiting time which proposed neural network better than conventional system dosen't consider neural network.

  • PDF

A Study on Network Based Traffic Signal Optimization Using Traffic Prediction Data (교통예측자료 기반 Network 차원의 신호제어 최적화 방안)

  • Han, Jeong-hye;Lee, Seon-Ha;Cheon, Choon-Keun;Oh, Tae-ho;Kim, Eun-Ji
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.77-90
    • /
    • 2015
  • An increasing number of vehicles is causing various traffic problems such as chronic congestion of highways and air pollution. Local governments have been managing traffic by constructing systems such as Intelligent Transport Systems (ITS) and Advanced Traffic Management Systems (ATMS) to relieve such problems, but construction of an infrastructure-based traffic system is insufficient in resolving chronic traffic problems. A more sophisticated system with enhanced operational management capabilities added to the existing facilities is necessary at this point. As traffic patterns of the urban traffic flow is time-specific due to the different vehicle populations throughout the time of the day, a local network-wide signal operation plan that can manage such situation-specific traffic patterns is deemed to be necessary. Therefore, this study is conducted for the purpose of establishment of a plan for contextual signal control management through signal optimization at the network level after setting the Frame Signal in accordance to the traffic patterns gathered from the short-term traffic forecast data as a means to mitigate the problems with existing standardized signal operations.

Development of Demand Forecasting Model for Seoul Shared Bicycle (서울시 공유자전거의 수요 예측 모델 개발)

  • Lim, Heejong;Chung, Kwanghun
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.132-140
    • /
    • 2019
  • Recently, many cities around the world introduced and operated shared bicycle system to reduce the traffic and air pollution. Seoul also provides shared bicycle service called as "Ddareungi" since 2015. As the use of shared bicycle increases, the demand for bicycle in each station is also increasing. In addition to the restriction on budget, however, there are managerial issues due to the different demands of each station. Currently, while bicycle rebalancing is used to resolve the huge imbalance of demands among many stations, forecasting uncertain demand at the future is more important problem in practice. In this paper, we develop forecasting model for demand for Seoul shared bicycle using statistical time series analysis and apply our model to the real data. In particular, we apply Holt-Winters method which was used to forecast electricity demand, and perform sensitivity analysis on the parameters that affect on real demand forecasting.

Relation with Activity of Road Mobile Source and Roadside Nitrogen Oxide Concentration (도로이동오염원의 활동도와 도로변 질소산화물 농도의 관계)

  • Kim, Jin Sik;Choi, Yun Ju;Lee, Kyoung Bin;Kim, Shin Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.9-20
    • /
    • 2016
  • Ozone has been a problem in big cities. That is secondary air pollutant produced by nitrogen oxide and VOCs in the atmosphere. In order to solve this, the first to be the analysis of the $NO_x$ and VOCs. The main source of nitrogen oxide is the road mobile. Industrial sources in Seoul are particularly low, and mobile traffics on roads are large, so 45% of total $NO_x$ are estimated that road mobile emissions in Seoul. Thus, it is necessary to clarify the relation with the activity of road mobile source and $NO_x$ concentration. In this study, we analyzed the 4 locations with roadside automatic monitoring systems in their center. The V.K.T. calculating areas are set in circles with 50 meter spacing, 50 meter to 500 meter from their center. We assumed the total V.K.T. in the set radius affect the $NO_x$ concentration in the center. We used the hourly $NO_x$ concentrations data for the 4 observation points in July for the interference of the other sources are minimized. We used the intersection traffic survey data of all direction for construction of the V.K.T. data, the mobile activities on the roads. ArcGIS application was used for calculating the length of roads in the set radius. The V.K.T. data are multiplied by segment traffic volume and length of roads. As a result, the $NO_x$ concentration can be expressed as linear function formula for V.K.T. with high predictive power. Moreover we separated background concentration and concentrations due to road mobile source. These results can be used for forecasting the effect of traffic demand management plan.

Air Pollution Forecasting Using Urban Transportation Planning Models and Air Pollution Dispersion Models (都市交通計劃 모델과 大氣汚染 擴散모델을 이용한 都市地域 大氣汚染 豫測)

  • 董宗仁;趙康來;金良均;兪 浣
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.31-40
    • /
    • 1986
  • Motor vehicle related air pollution has become more serious because of rapid increase of number of cars, specially in the urban area. The increase trend seems to be accelerated, however, the fact is that road conditions, parking facilities and traffic control systems are far behind coping with this situation. In spite of the lack of related basic data, urban transportation planning (UPT) and air pollution dispersion models were applied to predict air pollution level. In standard UPT model, trip generation, distribution, modal split and network assignment were estimated by experimental equations and appropriate models. The air pollution level in the central business area was believed to be higher and it will increase continuously due to the increase of traffic demand. To meet this situation, air pollution problem should be considered as a part of integrated plannings of urban plans or transportation plans as well as more stringent motor vehicle emission standards, have to be enforced.

  • PDF

A Study on forecasting of the Transportation Demand Mungyeng Line (문경선 운영 재개에 따른 이용수요 예측 연구)

  • Kim, Ick-Hee;Lee, Kyung-Tae
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.638-644
    • /
    • 2008
  • Mungyeng line(Jupyung${\sim}$Mungyeng) was closed due to a rapid decrease in demand in 1995. However, as the rail transportation demand is expected to increase with the plan to develop a tourist resort and a traffic network in Mungyeng area, it is required to forecast future demand to meet the change of transportation environment in this region. This study predicts the rail transportation demand and analyzes financial benefit in operator's side in case of reopening this line, based on nation-wide traffic volume data from Korean Transportation Database(KTDB). The results of this research can be applied to not only establishing a train operation plan also improving customer service. Moreover, Korail will have an opportunity to develop new business by linking train service to tourist attractions around the Mungyeng area.

  • PDF

Towards high-accuracy data modelling, uncertainty quantification and correlation analysis for SHM measurements during typhoon events using an improved most likely heteroscedastic Gaussian process

  • Qi-Ang Wang;Hao-Bo Wang;Zhan-Guo Ma;Yi-Qing Ni;Zhi-Jun Liu;Jian Jiang;Rui Sun;Hao-Wei Zhu
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.267-279
    • /
    • 2023
  • Data modelling and interpretation for structural health monitoring (SHM) field data are critical for evaluating structural performance and quantifying the vulnerability of infrastructure systems. In order to improve the data modelling accuracy, and extend the application range from data regression analysis to out-of-sample forecasting analysis, an improved most likely heteroscedastic Gaussian process (iMLHGP) methodology is proposed in this study by the incorporation of the outof-sample forecasting algorithm. The proposed iMLHGP method overcomes this limitation of constant variance of Gaussian process (GP), and can be used for estimating non-stationary typhoon-induced response statistics with high volatility. The first attempt at performing data regression and forecasting analysis on structural responses using the proposed iMLHGP method has been presented by applying it to real-world filed SHM data from an instrumented cable-stay bridge during typhoon events. Uncertainty quantification and correlation analysis were also carried out to investigate the influence of typhoons on bridge strain data. Results show that the iMLHGP method has high accuracy in both regression and out-of-sample forecasting. The iMLHGP framework takes both data heteroscedasticity and accurate analytical processing of noise variance (replace with a point estimation on the most likely value) into account to avoid the intensive computational effort. According to uncertainty quantification and correlation analysis results, the uncertainties of strain measurements are affected by both traffic and wind speed. The overall change of bridge strain is affected by temperature, and the local fluctuation is greatly affected by wind speed in typhoon conditions.

A GIS-based Traffic Accident Analysis on Highways using Alignment Related Risk Indices (고속도로 선형조건과 GIS 기반 교통사고 위험도지수 분석 (호남.영동.중부고속도로를 중심으로))

  • 강승림;박창호
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.1
    • /
    • pp.21-40
    • /
    • 2003
  • A traffic accident analysis method was developed and tested based on the highway alignment risk indices using geographic information systems(GIS). Impacts of the highway alignment on traffic accidents have been identified by examining accidents occurred on different alignment conditions and by investigating traffic accident risk indices(TARI). Evaluative criteria are suggested using geometric design elements as an independent variable. Traffic accident rates were forecasted more realistically and objectively by considering the interaction between highway alignment factors and the design consistency. And traffic accident risk indices and risk ratings were suggested based on model estimation results and accident data. Finally, forecasting traffic accident rates, evaluating the level of risk and then visualizing information graphically were combined into one system called risk assessment system by means of GIS. This risk assessment system is expected to play a major role in designing four-lane highways and developing remedies for highway sections susceptible to traffic accidents.

A Study on Development of Bus Arrival Time Prediction Algorithm by using Travel Time Pattern Recognition (통행시간 패턴인식형 버스도착시간 예측 알고리즘 개발 연구)

  • Chang, Hyunho;Yoon, Byoungjo;Lee, Jinsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.833-839
    • /
    • 2019
  • Bus Information System (BIS) collects information related to the operation of buses and provides information to users through predictive algorithms. Method of predicting through recent information in same section reflects the traffic situation of the section, but cannot reflect the characteristics of the target line. The method of predicting the historical data at the same time zone is limited in forecasting peak time with high volatility of traffic flow. Therefore, we developed a pattern recognition bus arrival time prediction algorithm which could be overcome previous limitation. This method recognize the traffic pattern of target flow and select the most similar past traffic pattern. The results of this study were compared with the BIS arrival forecast information history of Seoul. RMSE of travel time between estimated and observed was approximately 35 seconds (40 seconds in BIS) at the off-peak time and 40 seconds (60 seconds in BIS) at the peak time. This means that there is data that can represent the current traffic situation in other time zones except for the same past time zone.