본 연구에서는 TPEG(Transport Protocol Expert Group)의 수신 플랫폼을 개발하고 이에 대한 정확도를 검증하기 위한 실시간 검증 플랫폼을 개발하였다. GPS 장치를 갖춘 차량을 통해 얻은 실제 도로 교통정보와 같은 시간의 TPEG 데이터를 수신하고 파싱하여 얻어진 교통정보를 비교했다. 그 결과 TPEG은 실제 교통정보와 차이가 발생함을 알 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권10호
/
pp.3858-3874
/
2021
As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권1호
/
pp.216-238
/
2023
In intelligent transportation systems, traffic management is an important task. The accurate forecasting of traffic characteristics like flow, congestion, and density is still active research because of the non-linear nature and uncertainty of the spatiotemporal data. Inclement weather, such as rain and snow, and other special events such as holidays, accidents, and road closures have a significant impact on driving and the average speed of vehicles on the road, which lowers traffic capacity and causes congestion in a widespread manner. This work designs a model for multivariate short-term traffic congestion prediction using SLSTM_AE-BiLSTM. The proposed design consists of a Bidirectional Long Short Term Memory(BiLSTM) network to predict traffic flow value and a Convolutional Neural network (CNN) model for detecting the congestion status. This model uses spatial static temporal dynamic data. The stacked Long Short Term Memory Autoencoder (SLSTM AE) is used to encode the weather features into a reduced and more informative feature space. BiLSTM model is used to capture the features from the past and present traffic data simultaneously and also to identify the long-term dependencies. It uses the traffic data and encoded weather data to perform the traffic flow prediction. The CNN model is used to predict the recurring congestion status based on the predicted traffic flow value at a particular urban traffic network. In this work, a publicly available Caltrans PEMS dataset with traffic parameters is used. The proposed model generates the congestion prediction with an accuracy rate of 92.74% which is slightly better when compared with other deep learning models for congestion prediction.
우리나라는 교통사고 안전 사회 실현을 위하여 범정부 종합대책을 2017년에 마련하였으며. 도심 지역의 제한속도를 기존 60km에서 50km로 낮추고 어린이보호구역의 경우에는 30km로 제한하는 등 차량이 저속으로 운행하게 하여 어린이 및 노인의 보행 중 사고를 최소화하기 위한 노력을 기울이고 있다. 본 연구에서는 매년 어린이 교통사고 사고율이 높아지고 있는 특정 지역인 단양군을 지정하여 자동차 등록현황, 교통사고 공간데이터(GIS) 현황으로 각 데이터를 전처리 후 데이터의 구조를 이해하고 데이터의 구조적 패턴을 알아내기 위한 분석 연구를 하였다.
본 논문에서는 음성 트래픽을 동기 모드로, 데이타 트래픽을 비동기 모드로 집적시켜 전송하는 FDDI 통신망에 대하여 수학적 분석과 시뮬레이션을 수행하여 성능을 분석 한다. 음성과 데이타의 평균 패킷 대기 시간을 구하기 위하여, 음성은 Marcov 모델에서 발음 부분과 묵음 부분이 교대로 나타나는 모델로 하며, 데이타는 TRT와 TTRT의 차이 시간동안 전송하는 모델로 하는 경우, 음성과 데이타의 패킷 대기 시간을 구하여 동기모드와 비동기 모드 사이의 전송관계에 대하여 연구하였다. 연구 결과 동기/ 비동기 집적 방식으로 음성과 데이타를 집적하여 전송하여도 음성 채널 용량의 제약없이 데이타를 집적 시킬 수 있었으며, 데이타 전송도 작은 대기 시간내에 신속하게 전송할 수가 있었다.
교통정보는 지상파 DMB에서 핵심적인 콘텐츠로 주목받고 있는 것 중에 하나이다. 본 논문은 지상파 DMB에서 신속히 교통정보를 제공하기 위하여, 데이타 수집부터 콘텐츠 전송까지, 모든 과정을 자동으로 수행하는 데이타방송시스템을 제안하고, 이를 구현한다. 본 연구에서 제안한 데이터방송시스템은 크게, 실시간으로 교통데이타를 수집 가공하는 교통정보통합시스템, 콘텐츠를 자동으로 생성 및 검증하는 교통정보저작시스템, 생성된 콘텐츠의 송출을 담당하는 교통정보전송시스템으로 나누어져 있다. 이러한 서브시스템(subsystem)들의 기능과 구성요소, 그리고 상호작용에 대하여 설명한다. 제안하는 데이타방송시스템은 BWS유형의 콘텐츠를, 지상파 DMB 오디오방송의 부가데이타(PAD)로 제공한다. 마지막으로 데이타방송시스템의 구현결과와 향후 개선사항에 대하여 설명한다.
빅데이터의 등장과 더불어 교통 상태 예측은 과거 이력 데이터 분석 방식에 힘을 싣고 발전되어 왔으나, 이 방법은 관측된 적 없는 돌발 상황에 충분히 대응하지 못한다는 약점이 있다. 본 연구에서는 기계학습과 시뮬레이션 기법의 융합을 통해 돌발 상황 발생 시 교통 상태 예측 정확도 감소를 보완할 수 있는 예측 기법을 제시한다. 데이터 기반 방식의 맹점은 과거에 관측된 적 없는 데이터 패턴이 인지되었을 때 드러난다. 본 연구에서는 시뮬레이션을 이용하여 과거 이력 데이터를 보강하는 방법으로 문제를 해결하고자 하였다. 제시한 방법은 기계학습 기반의 교통 예측을 수행하고, 예측 결과와 실시간으로 수집되는 교통 데이터를 지속적으로 비교하여 돌발 상황 발생 여부를 판단한다. 돌발 상황이 인지되었을 시, 시뮬레이션을 통해 생성한 데이터베이스를 활용하여 예측을 수행한다. 본 연구에서 제시한 방법은 실제 도로 구간을 대상으로 검증되었으며, 검증 결과 돌발 상황에서의 교통 상태 예측 정확도 향상을 확인할 수 있었다. 본 연구에서 제시한 융합 교통 예측 방법은 향후 교통 예측 고도화에 이바지할 수 있을 것으로 전망된다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권6호
/
pp.2483-2503
/
2016
Traffic congestion is a severe problem in many modern cities around the world. Real-time and accurate traffic congestion identification can provide the advanced traffic management systems with a reliable basis to take measurements. The most used data sources for traffic congestion are loop detector, GPS data, and video surveillance. Video based traffic monitoring systems have gained much attention due to their enormous advantages, such as low cost, flexibility to redesign the system and providing a rich information source for human understanding. In general, most existing video based systems for monitoring road traffic rely on stationary cameras and multiple vehicle tracking method. However, most commonly used multiple vehicle tracking methods are lack of effective track initiation schemes. Based on the motion of the vehicle usually obeys constant velocity model, a novel vehicle recognition method is proposed. The state of recognized vehicle is sent to the GM-PHD filter as birth target. In this way, we relieve the insensitive of GM-PHD filter for new entering vehicle. Combining with the advanced vehicle detection and data association techniques, this multiple vehicle tracking method is used to identify traffic congestion. It can be implemented in real-time with high accuracy and robustness. The advantages of our proposed method are validated on four real traffic data.
International Journal of Fuzzy Logic and Intelligent Systems
/
제13권4호
/
pp.269-276
/
2013
Information and communication technology (ICT) is a promising solution for mitigating road traffic congestion. ICT allows road users and vehicles to be managed based on real-time road status information. In Tanzania, traffic congestion causes losses of TZS 655 billion per year. The main objective of this study was to develop an optimal approach for integrating real-time road information (RRI) to mitigate traffic congestion. Our research survey focused on three cities that are highly affected by traffic congestion, i.e., Arusha, Mwanza, and Dar es Salaam. The results showed that ICT is not yet utilized fully to solve road traffic congestion. Thus, we established a possible approach for Tanzania based on an analysis of road traffic data provided by organizations responsible for road traffic management and road users. Furthermore, we evaluated the available road information management techniques to test their suitability for use in Tanzania. Using the floating car data technique, fuzzy logic was implemented for real-time traffic level detection and decision making. Based on this solution, we propose a RRI system architecture, which considers the effective utilization of readily available communication technology in Tanzania.
Traffic accident analysis is important to reduce the occurrence of the accidents. In this paper, we analyze the traffic accident with Apriori algorithm to find out an association rule of traffic accident in Korea. We first design the traffic accident analysis model, and then collect the traffic accidents data. We preprocessed the collected data and derived some new variables and attributes for analyzing. Next, we analyze based on statistical method and Apriori algorithm. The result shows that many large-scale accident has occurred by vans in daytime. Medium-scale accident has occurred more in day than nighttime, and by cars more than vans. Small-scale accident has occurred more in night time than day time, however, the numbers were similar. Also, car-human accident is more occurred than car-car accident in small-scale accident.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.