• Title/Summary/Keyword: Traffic Loads

Search Result 342, Processing Time 0.027 seconds

Performance analysis of cache strategy for signaling traffic management in wireless ATM network (무선 ATM망에서 신호 트래픽 관리를 위한 기억공간 적재기법의 성능분석)

  • 최기무;조동호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.7
    • /
    • pp.1639-1649
    • /
    • 1998
  • For mobile multimedia services, wireless ATM(Asynchronous transfer Mode) network is studied actively. In wireless ATM network, the existing signaling protocols generate heavy traffics for HLR due to the centralized structure that all signaling loads mush be handled in HLR(Home Location Register). Also, centralized structure causes critical connection setup delays. Thus, it is important that wireless ATM reduces the connection setup delays occurred due to high traffic loads of signaling based on distributed processing. In this thesis, we propose a cache strategy for call delivery as well as the cache updates of registration based on ATM multicasting and compares the cost of cache scheme with that of conventional scheme. Our study shows that cache scheme has better performance than the conventional methods in the case that the portable mobility is low and traffic density is large.

  • PDF

A New Criterion of Cell Discard in an ATM Switch with Input and Output Buffers (입출력버퍼형 ATM 교환기의 셀 폐기 방법에 대한 새로운 기준 제안 및 성능 분석)

  • Gwon, Se-Dong;Park, Hyeon-Min;Choe, Byeong-Seok;Park, Jae-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1246-1264
    • /
    • 2000
  • An input-output buffering switch operates in either of tow different cell loss modes; Backpressure mode and Queueloss mode. In the previous studies, the Backpressrue mode is more effective at low traffic loads, and the Queueloss mode performs better at high traffic. We propose a new operation mode, called Hybrid mode, which adopts the advantages of he Backpressure and the Queueloss mode. Backpressure and Queueloss modes are distinguished from whether a cell loss occurs at the output buffer or not when output buffer overflows, irrespective of input buffer status. In order to simply combine Backpressure and Queueloss mode, the change of input traffic load must be measured. However, in the Hybrid mode, simply both of the input and output buffer overflow and checked out to determine the cell discard. The performance of the Hybrid mode is compared with those of the Backpressure and the Queueloss mode under random and bursty traffic. This paper show that the Hybrid mode always gives the best performance results for most ranges of load values.

  • PDF

Traffic Analysis Monitoring System for Web Server Load Balancing (웹서버의 부하균형을 위한 트래픽상황분석 모니터링 시스템)

  • Choi E-Jung;Lee Eun-Seok;Kim Seok-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.2
    • /
    • pp.79-85
    • /
    • 2005
  • In order to handle client's requests while multiple servers seamlessly work in the web server cluster environment, it is vital to implement a router that execute a routing using TCP information and requested target content. The implemented package software measured packet volume that was generated from data generator, virtual server, and server 1, 2, 3, and could find out traffic distribution toward Server 1, 2, 3. As the result of the study shows, Round Robin Algorithm ensured definite traffic distribution, unless incoming data loads differ much. Although error levels were high in some partial cases, they were eventually alleviated by repeated tests for a longer time.

  • PDF

CANCAR - Congestion-Avoidance Network Coding-Aware Routing for Wireless Mesh Networks

  • Pertovt, Erik;Alic, Kemal;Svigelj, Ales;Mohorcic, Mihael
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4205-4227
    • /
    • 2018
  • Network Coding (NC) is an approach recently investigated for increasing the network throughput and thus enhancing the performance of wireless mesh networks. The benefits of NC can further be improved when routing decisions are made with the awareness of coding capabilities and opportunities. Typically, the goal of such routing is to find and exploit routes with new coding opportunities and thus further increase the network throughput. As shown in this paper, in case of proactive routing the coding awareness along with the information of the measured traffic coding success can also be efficiently used to support the congestion avoidance and enable more encoded packets, thus indirectly further increasing the network throughput. To this end, a new proactive routing procedure called Congestion-Avoidance Network Coding-Aware Routing (CANCAR) is proposed. It detects the currently most highly-loaded node and prevents it from saturation by diverting some of the least coded traffic flows to alternative routes, thus achieving even higher coding gain by the remaining well-coded traffic flows on the node. The simulation results confirm that the proposed proactive routing procedure combined with the well-known COPE NC avoids network congestion and provides higher coding gains, thus achieving significantly higher throughput and enabling higher traffic loads both in a representative regular network topology as well as in two synthetically generated random network topologies.

Composite deck construction for the rehabilitation of motorway bridges

  • Greiner, R.;Ofner, R.;Unterweger, H.
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.67-84
    • /
    • 2002
  • Traffic decks of steel or composite motorway bridges sometimes provide the opportunity of using the composite action between an existing steel deck and a reinforced concrete plate (RC plate) in the process of rehabilitation, i.e., to increase the load-carrying capacity of the deck for concentrated traffic loads. The steel decks may be orthotropic decks or also unstiffened steel plates, which during the rehabilitation are connected with the RC plate by shear studs, such developing an improved local load distribution by the joint behaviour of the two plate elements. Investigations carried out, both experimentally and numerically, were performed in order to quantitatively assess the combined static behaviour and to qualitatively verify the usability of the structure for dynamic loading. The paper reports on the testing, the numerical simulation as well as the comparison of the results. Conclusions drawn for practical design indicated that the static behaviour of these structures may be very efficient and can also be analysed numerically. Further, the results gave evidence of a highly robust behaviour under fatigue equivalent cyclic traffic loading.

Analyzing the Impact of Buffer Capacity on Crosspoint-Queued Switch Performance

  • Chen, Guo;Zhao, Youjian;Pei, Dan;Sun, Yongqian
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.523-530
    • /
    • 2016
  • We use both theoretical analysis and simulations to study the impact of crosspoint-queued (CQ) buffer size on CQ switch throughput and delay performance under different traffic models, input loads, and scheduling algorithms. In this paper, we present the following. 1) We prove the stability of CQ switch using any work-conserving scheduling algorithm. 2) We present an exact closed-form formula for the CQ switch throughput and a non-closed-form but convergent formula for its delay using static non-work-conserving random scheduling algorithms with any given buffer size under independent Bernoulli traffic. 3) We show that the above results can serve as a conservative guide on deciding the required buffer size in pure CQ switches using work-conserving algorithms such as the random scheduling, under independent Bernoulli traffic. 4) Furthermore, our simulation results under real-trace traffic show that simple round-robin and random work-conserving algorithms can achieve quite good throughput and delay performance with a feasible crosspoint buffer size. Our work reveals the impact of buffer size on the CQ switch performance and provides a theoretical guide on designing the buffer size in pure CQ switch, which is an important step toward building ultra-high-speed switch fabrics.

A completely non-contact recognition system for bridge unit influence line using portable cameras and computer vision

  • Dong, Chuan-Zhi;Bas, Selcuk;Catbas, F. Necati
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.617-630
    • /
    • 2019
  • Currently most of the vision-based structural identification research focus either on structural input (vehicle location) estimation or on structural output (structural displacement and strain responses) estimation. The structural condition assessment at global level just with the vision-based structural output cannot give a normalized response irrespective of the type and/or load configurations of the vehicles. Combining the vision-based structural input and the structural output from non-contact sensors overcomes the disadvantage given above, while reducing cost, time, labor force including cable wiring work. In conventional traffic monitoring, sometimes traffic closure is essential for bridge structures, which may cause other severe problems such as traffic jams and accidents. In this study, a completely non-contact structural identification system is proposed, and the system mainly targets the identification of bridge unit influence line (UIL) under operational traffic. Both the structural input (vehicle location information) and output (displacement responses) are obtained by only using cameras and computer vision techniques. Multiple cameras are synchronized by audio signal pattern recognition. The proposed system is verified with a laboratory experiment on a scaled bridge model under a small moving truck load and a field application on a footbridge on campus under a moving golf cart load. The UILs are successfully identified in both bridge cases. The pedestrian loads are also estimated with the extracted UIL and the predicted weights of pedestrians are observed to be in acceptable ranges.

Estimation of Dynamic Load Amplification Factors under Various Roughness Indices and Vehicle Classes (주행차량의 종류와 아스팔트 콘크리트 포장 평탄성에 따른 동적하중 증가계수 산정)

  • Choi, Jun-Seong;Seo, Joo-Won;Kim, Jong-Woo
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.29-36
    • /
    • 2012
  • In this study, frequently passing vehicles with two, three, four, and five axles were chosen through traffic volume analysis in Kyung-In Expressway in order to analyze how the road roughness and vehicle speed affect on the dynamic loads for roads in various vehicle classes. Dynamic loads according to chosen vehicles are estimated by TruckSim program. Dynamic load amplification factor is ratio between dynamic and static loads, and it is also determined for each vehicle classes. From the result of dynamic loads estimated by the dynamic load amplification factor, it is shown that for three-axles vehicle, when IRI is 3.5 and vehicle speed is 100km/hr, asphalt pavements receive additional 36% of static loads in maximum. The analysis of the amplification factor according to each vehicle classes also indicates that the amplification factor increases as the distance between the axles becomes smaller and each axle receives more loads.

Road Maintenance Planning with Traffic Demand Forecasting (장래교통수요예측을 고려한 도로 유지관리 방안)

  • Kim, Jeongmin;Choi, Seunghyun;Do, Myungsik;Han, Daeseok
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.47-57
    • /
    • 2016
  • PURPOSES : This study aims to examine the differences between the existing traffic demand forecasting method and the traffic demand forecasting method considering future regional development plans and new road construction and expansion plans using a four-step traffic demand forecast for a more objective and sophisticated national highway maintenance. This study ultimately aims to present future pavement deterioration and budget forecasting planning based on the examination. METHODS : This study used the latest data offered by the Korea Transport Data Base (KTDB) as the basic data for demand forecast. The analysis scope was set using the Daejeon Metropolitan City's O/D and network data. This study used a traffic demand program called TransCad, and performed a traffic assignment by vehicle type through the application of a user equilibrium-based multi-class assignment technique. This study forecasted future traffic demand by verifying whether or not a realistic traffic pattern was expressed similarly by undertaking a calibration process. This study performed a life cycle cost analysis based on traffic using the forecasted future demand or existing past pattern, or by assuming the constant traffic demand. The maintenance criteria were decided according to equivalent single axle loads (ESAL). The maintenance period in the concerned section was calculated in this study. This study also computed the maintenance costs using a construction method by applying the maintenance criteria considering the ESAL. The road user costs were calculated by using the user cost calculation logic applied to the Korean Pavement Management System, which is the existing study outcome. RESULTS : This study ascertained that the increase and decrease of traffic occurred in the concerned section according to the future development plans. Furthermore, there were differences from demand forecasting that did not consider the development plans. Realistic and accurate demand forecasting supported an optimized decision making that efficiently assigns maintenance costs, and can be used as very important basic information for maintenance decision making. CONCLUSIONS : Therefore, decision making for a more efficient and sophisticated road management than the method assuming future traffic can be expected to be the same as the existing pattern or steady traffic demand. The reflection of a reliable forecasting of the future traffic demand to life cycle cost analysis (LCCA) can be a very vital factor because many studies are generally performed without considering the future traffic demand or with an analysis through setting a scenario upon LCCA within a pavement management system.

Assessment of Equivalent Heights of Soil for the Lateral Earth Pressure Against Retaining Walls Due to Design Truck Load by 3D Numerical Analysis (3차원 수치해석에 의한 표준트럭하중에 의해 옹벽에 작용하는 수평토압의 등가높이 산정)

  • Seo, Seunghwan;Jin, Hyunsik;Kim, Dongwook;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.75-85
    • /
    • 2019
  • The lateral load from traffic depends on standard truck's axle loads and locations, loading distance from the inner wall. The method of limit state design has been adopted and used for design of roads in the Republic of Korea since 2015. The concept of equivalent height of soil accounting for traffic loading is often used for design of retaining walls to quantify the traffic loads transmitted to the inner wall faces. Due to the different characteristics of the standard design trucks between Korea and US (AASHTO), the direct use of the guidelines from AASHTO LRFD leads to incorrect estimation of traffic load effects on retaining walls. This paper presents the results of evaluation of equivalent height of soil to reflect the standard truck of the nation, based on the findings from analytical solutions using 3D finite element method. Compare to US, the standard truck loading has a structure where the axle load is concentrated so that the equivalent load height is estimated to be slightly larger than AASHTO for lower retaining wall height. It would be reasonable to present the equivalent load height in Korea more conservatively than AASHTO in terms of securing long term stability of the retaining wall structure.