IEIE Transactions on Smart Processing and Computing
/
v.6
no.4
/
pp.281-291
/
2017
Nowadays, as traffic jams are a daily elementary problem in both developed and developing countries, systems to monitor, predict, and detect traffic conditions are playing an important role in research fields. Comparing them, researchers have been trying to solve problems by applying many kinds of technologies, especially roadside sensors, which still have some issues, and for that reason, any one particular method by itself could not generate sufficient traffic prediction results. However, these sensors have some issues that are not useful for research. Therefore, it may not be best to use them as stand-alone methods for a traffic prediction system. On that note, this paper mainly focuses on predicting traffic conditions based on a hybrid prediction approach, which stands on accuracy comparison of three prediction models: multinomial logistic regression, decision trees, and support vector machine (SVM) classifiers. This is aimed at selecting the most suitable approach by means of integrating proficiencies from these approaches. It was also experimentally confirmed, with test cases and simulations that showed the performance of this hybrid method is more effective than individual methods.
The applicability of network-based computing depends on the availability of the underlying network bandwidth. Such a growing gap between the capacity of the backbone network and the end users' needs results in a serious bottleneck of the access network in between. As a result, ISP incurs disadvantages in their business. If this situation is known to ISP in advance, or if ISP is able to predict traffic volume end-to-end link high-load zone, ISP and end users would be able to decrease the gap for ISP service quality. In this paper, simulation tools, such as ACE, ADM, and Flow Analysis, were used to be able to perceive traffic volume prediction and end-to-end link high-load zone. In using these simulation tools, we were able to estimate sequential transaction in real-network for e-Commerce. We also imported virtual network environment estimated network data, and create background traffic. In a virtual network environment like this, we were able to find out simulation results for traffic volume prediction and end-to-end link high-load zone according to the increase in the number of users based on virtual network environment.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.18
no.4
/
pp.44-57
/
2019
Various studies have been conducted to solve traffic congestions in many metropolitan cities through accurate traffic flow prediction. Most studies are based on the assumption that past traffic patterns repeat in the future. Models based on such an assumption fall short in case irregular traffic patterns abruptly occur. Instead, the approaches such as predicting traffic pattern through big data analytics and artificial intelligence have emerged. Specifically, deep learning algorithms such as RNN have been prevalent for tackling the problems of predicting temporal traffic flow as a time series. However, these algorithms do not perform well in terms of long-term prediction. In this paper, we take into account various external factors that may affect the traffic flows. We model the correlation between the multi-dimensional context information with temporal traffic speed pattern using deep neural networks. Our model trained with the traffic data from TOPIS system by Seoul, Korea can predict traffic speed on a specific date with the accuracy reaching nearly 90%. We expect that the accuracy can be improved further by taking into account additional factors such as accidents and constructions for the prediction.
Various procedures for evaluation of traffic noise annoyance have been proposed. However, most of the studies of this type are restricted for improving traffic flow. In this paper, a method to predict the road traffic noise is proposed in terms of equivalent continuous A-Weighted sound pressure level (Leq), based on a probability model. First, distribution of the road traffic noise level are investigated. second, the weibull distribution parameters are estimated by using the quantification theory. Finally, a prediction model of the road traffic noise is proposed based on the weibull distribution model The predicted values of the Leq are closely matched the measured data.
The Transactions of the Korea Information Processing Society
/
v.7
no.10
/
pp.3195-3200
/
2000
this paper is a stucy onthe preductionof multi-media traffic flow for the realizationof optimum ATM congestion control. In ATM network it is expected that the characteristic of multi-media traffic flow is varied slowly with a time. Fjor the simulation, time-variable multi-media traffic is penerated using possion distribution(connect calls per process time).\, gamma distribution(transmission rate per a call) and exponential distribution(holding time per a call). And using back-propagation neural netwok and proposed tripple neural network, the simulation to predict generaed traffic is executed. From the result,it's capability is shown that the proposed neural network model can be used in the predictionof ATM traffic flow.
Purpose: In Korea, traffic information is collected in real time as part of Intelligent Transportation System to enhance efficiency of road operation. However, traffic information based on real-time data is different from the traffic situation the driver will experience. Method: In this study, forecasts were made for future highway traffic by day and time period by adjusting the Archived data reference days to 3, 5 and 10 days based on existing traffic Archived data. Results: Fewer days of reference in the past showed smaller errors. The prediction of Monday based on five past histories showed greater errors than the 10 past histories, as the traffic flow on the sixth Monday of 2016 was somewhat different from the usual holiday. Conclution: This study shows that less of the reference days of the past history when estimating traffic volume, the more accurate the data of the traffic history of the event can be used on special days.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.1
/
pp.136-151
/
2016
Flexible large-scale WLANs are now widely deployed in crowded and highly mobile places such as campus, airport, shopping mall and company etc. But network management is hard for large-scale WLANs due to highly uneven interference and throughput among links. So the traffic is difficult to predict accurately. In the paper, through analysis of traffic in two real large-scale WLANs, Granger Causality is found in both scenarios. In combination with information entropy, it shows that the traffic prediction of target AP considering Granger Causality can be more predictable than that utilizing target AP alone, or that of considering irrelevant APs. So We develops new method -Granger Causality and Vector Auto-Regression (GCVAR), which takes APs series sharing Granger Causality based on Vector Auto-regression (VAR) into account, to predict the traffic flow in two real scenarios, thus redundant and noise introduced by multivariate time series could be removed. Experiments show that GCVAR is much more effective compared to that of traditional univariate time series (e.g. ARIMA, WARIMA). In particular, GCVAR consumes two orders of magnitude less than that caused by ARIMA/WARIMA.
The Journal of Korean Institute of Communications and Information Sciences
/
v.25
no.9A
/
pp.1299-1305
/
2000
In B-ISDN, to realize ATM, the optimum control method of multi-media traffic must be proposed. Because there is not the traffic model of multi-media to make clear, the realization of optimum ATM congestion control is very difficult. In this paper, the traffic model is assumed to be slowly time-variable non-linear function and for real-time prediction of it, new model which is composed with parallel triple neural networks is proposed. And the simulation to predict assumed ATM traffic is executed. From the result, it's capability is shown that the proposed neural network model can be used in ATM congestion control.
Journal of the Korea Institute of Information and Communication Engineering
/
v.13
no.9
/
pp.1811-1818
/
2009
This paper is about the research to maintain and enhance the flow of data of the wireless traffic control. Various types of burst traffic that were found at TCP window flow control have been removed or mitigated using the two-way traffic control. Currently, TCP ACK Compression problem appears during the transmission of the wireless communication control channel because the queues are mostly located at the end system. Therefore, in this paper, the periodic bursty characterist of the source IP queue wilt be analyzed to predict the maximum value of queues. And then the prediction tool will be applied to wireless communication traffic control to handle symmetric traffic as to increase the throughput and improve the performance.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.6
/
pp.2964-2985
/
2019
Global data center IP traffic is expected to reach 20.6 zettabytes (ZB) by the end of 2021. Intra-data center networks (Intra-DCN) will account for 71.5% of the data center traffic flow and will be the largest portion of the traffic. The understanding of traffic distribution in IntraDCN is still sketchy. It causes significant amount of bandwidth to go unutilized, and creates avoidable choke points. Conventional transport protocols such as Optical Packet Switching (OPS) and Optical Burst Switching (OBS) allow a one-sided view of the traffic flow in the network. This therefore causes disjointed and uncoordinated decision-making at each node. For effective resource planning, there is the need to consider joining the distributed with centralized management which anticipates the system's needs and regulates the entire network. Methods derived from Kalman filters have proved effective in planning road networks. Considering the network available bandwidth as data transport highways, we propose an intelligent enhanced SDN concept applied to OBS architecture. A management plane (MP) is added to conventional control (CP) and data planes (DP). The MP assembles the traffic spatio-temporal parameters from ingress nodes, uses Kalman filtering prediction-based algorithm to estimate traffic demand. Prior to packets arrival at edges nodes, it regularly forwards updates of resources allocation to CPs. Simulations were done on a hybrid scheme (1+1) and on the centralized OBS. The results demonstrated that the proposition decreases the packet loss ratio. It also improves network latency and throughput-up to 84 and 51%, respectively, versus the traditional scheme.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.