• Title/Summary/Keyword: Traffic Flow Model

Search Result 428, Processing Time 0.022 seconds

Analysis of Provincial road in National Highway Average Speed Variation According to Rainfall Intensity (강우 강도에 따른 일반국도 지방부 도로의 평균속도 변화 분석)

  • Kim, Tae-Woon;Oh, Ju-Sam
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.4
    • /
    • pp.510-518
    • /
    • 2015
  • Weather condition has effect on traffic condition, but there is a lack of research between weather and traffic condition. So, in this study analyzes speed variation according to rainfall intensity in national highway provincial road. The results of the analysis, average speed is reduced about 3.2%. But average speed decrease by maximum 8.8% when traffic volume is below 200vph per direction. Because relatively, free flow traffic speed has greatly deceased according to rainfall intensity in provincial road. Also in this study estimates of speed reduction model according to rainfall and performs the statistical verification. Estimated speed reduction model's slops are gradual when rainfall increased, because average speed is reduced by rainfall when free flow.

Speed Prediction of Urban Freeway Using LSTM and CNN-LSTM Neural Network (LSTM 및 CNN-LSTM 신경망을 활용한 도시부 간선도로 속도 예측)

  • Park, Boogi;Bae, Sang hoon;Jung, Bokyung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.86-99
    • /
    • 2021
  • One of the methods to alleviate traffic congestion is to increase the efficiency of the roads by providing traffic condition information on road user and distributing the traffic. For this, reliability must be guaranteed, and quantitative real-time traffic speed prediction is essential. In this study, and based on analysis of traffic speed related to traffic conditions, historical data correlated with traffic flow were used as input. We developed an LSTM model that predicts speed in response to normal traffic conditions, along with a CNN-LSTM model that predicts speed in response to incidents. Through these models, we try to predict traffic speeds during the hour in five-minute intervals. As a result, predictions had an average error rate of 7.43km/h for normal traffic flows, and an error rate of 7.66km/h for traffic incident flows when there was an incident.

Assessment of Pedestrian Comfort Levels Based on the Microscopic Features of Pedestrian Traffic Flow (보행교통류 시뮬레이션 모형을 활용한 보행편의성 지표의 개발 및 분석)

  • LEE, Joo-Yong
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.6
    • /
    • pp.499-509
    • /
    • 2016
  • The pedestrian traffic flow has more complicated microscopic features than vehicular traffic flow. Without any designated lanes or any guidance, pedestrians naturally move and change their routes in two dimensional domain with ease. Thus the assessment of pedestrian comfort level should be considering the microscopic features of pedestrian flow. This study is aimed at developing pedestrian comfort criteria based upon pedestrian flow simulation model. This study suggests three criteria to determine pedestrian comfort level; the deviation of route, the acceleration of walk, and the number of collision. Each criterion, which can address the unique walking patterns of pedestrian flow, is represented as each different function with respect to traffic flow rate. The criteria can be the additional indicators to determine the level of service of pedestrian flow together with traffic flow rate and walking speed.

A Study on Optimization of Lane-Use and Traffic Signal Timing at a Signalized Intersection (신호교차로의 차로 배정과 신호시간 최적화 모형에 관한 연구)

  • Kim, Ju Hyun;Shin, Eon Kyo
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.93-103
    • /
    • 2015
  • PURPOSES : The purpose of this study is to present a linear programing optimization model for the design of lane-based lane-uses and signal timings for an isolated intersection. METHODS: For the optimization model, a set of constraints for lane-uses and signal settings are identified to ensure feasibility and safety of traffic flow. Three types of objective functions are introduced for optimizing lane-uses and signal operation, including 1) flow ratio minimization of a dual-ring signal control system, 2) cycle length minimization, and 3) capacity maximization. RESULTS : The three types of model were evaluated in terms of minimizing delay time. From the experimental results, the flow ratio minimization model proved to be more effective in reducing delay time than cycle length minimization and capacity maximization models and provided reasonable cycle lengths located between those of other two models. CONCLUSIONS : It was concluded that the flow ratio minimization objective function is the proper one to implement for lane-uses and signal settings optimization to reduce delay time for signalized intersections.

A Study on Traffic Impact Assessment Method using Microscopic Simulation Model (미시적 교통류 시뮬레이션을 활용한 교통영향평가 분석기법 개선방안)

  • Shin, Dae-Sup;Lee, Seon-Ha
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.31-37
    • /
    • 2008
  • Traffic flow which is prescribed under previous traffic effect/access act is analyzed by traffic volume, V/C, mean speed on road and LOS on the intersection. These indexes based on analytical method can not consider stochastic characteristics of traffic flow. Moreover it is hard to analyze traffic flow visually in whole traffic effect area because only individual road and intersections are targeted. In this study, it is devised to show traffic flow analysis method within traffic effect area visually applying microscopic-simulation by car-following theory, and then based on this, effect analyze ways are studied according to space range plan, improvement measure establishment and etc. To execute this study, effect area is set up using V/C, and the change of traffic current around development area is analyzed using microscopic-simulation program.

Developing a Freeway Flow Management Scheme Under Ubiquitous System Environments (유비쿼터스 환경에서의 연속류 적정속도 관리 기술 개발)

  • Park, Eun-Mi;Seo, Ui-Hyeon;Go, Myeong-Seok;O, Hyeon-Seon
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.4
    • /
    • pp.167-175
    • /
    • 2010
  • The ubiquitous transportation system environments make it possible to collect each vehicle's position and velocity data and to perform more sophisticated traffic flow management at the individual vehicle or platoon level through vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication. It is necessary to develop a traffic flow management scheme to take advantage of the ubiquitous transportation system environments. This paper proposes an algorithm to advise the optimal speed for each vehicle according to the traffic flow condition. The algorithm aims to stabilize the traffic flow by advising the equilibrium speed to the vehicles speeding or crawling under freely flowing condition. And it aims to prevent or at least alleviate the shockwave propagation by advising the optimal speed that should dampen the speed drop under critical flow conditions. This paper builds a simulation testbed and performs some simulation experiments for the proposed algorithm. The proposed algorithm shows the expected results in terms of travel time reduction and congestion alleviation.

A Study on Characteristics of Traffic Flow in Congested Traffic at On-Ramp Influence Area (혼잡교통류 상태에서의 연결로 합류부 교통류 특성에 관한 기초 연구)

  • Kim, Sang-Gu;Kim, Young-Ho;Kim, Tae-Wan;Son, Young-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.5
    • /
    • pp.99-109
    • /
    • 2004
  • Most traffic congestion on a freeway occurs in the merge area, where conflicts between mainline traffic and on-ramp traffic are frequently generated. So far, research on the merge area has mainly dealt with free flow traffic and research on the congested traffic at the merge area is rare. This study investigates the relationships between mainline traffic and on-ramp traffic at three different segments of the merge area. For this purpose, new indicators based on such traffic variables as flow, speed, and density are used. The results show that a negative relationship exists between mainline and on-ramp flow. It is also found that the speed and the density of the right two lanes in the mainline traffic are significantly affected by the on-ramp flow. Based on the correlation analysis of the indicators, it is confirmed that the ramp influence area is the right two lanes of the freeway mainline. The revealed relationships between mainline and on-ramp traffic may help to analyze the capacity of the downstream freeway segment of the merging area in congested traffic. The findings of this studyalso provide a basis to develop a model that estimates the merge traffic volume in congested traffic, which is neither theoretically nor empirically sound in most other traffic flow models developed so far.

A Study on Describing Uninterrupted Traffic Flows using Macroscopic Models (연속교통류 재현을 위한 거시적 모형의 비교 연구)

  • 임성만;김대호;김영찬
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.69-82
    • /
    • 2002
  • The objective of this study is to evaluate the performance of macroscopic traffic flow models with the analytical and field data. Five candidate models were selected as follows ; Lax Method Model, Upwind Scheme Model, Hilliges'Model, Papageorgiou's Model, and Cell-Transmission Model. In the analytical test scenario, the traffic condition was assumed that could cause the building and dissipation of queue, and each model was compared with analytical solutions and the numerical results. An analytical test indicated that both simple continuum and high order continuum models are able to reproduce queue building and dissipating behavior in a reasonable way A field test has shown that Upwind and Papageorgiou's model show similar performances. Considering the simplicity in model formulation and numerical computation, we firstly recommend Upwind scheme model , and secondly Papageorgiou's model that performed will to represent traffic flow in tests as candidate models for further development of simulation model for Naebu expressway in Seoul.

A Study on Operation Methodology of A Signalized Intersection Based on Optimization of Lane-Uses (차로배정 최적화를 고려한 신호교차로 운영방안에 관한 연구)

  • Kim, Ju Hyun;Shin, Eon Kyo
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.125-133
    • /
    • 2013
  • PURPOSES : The purpose of this study is to propose delay-minimizing operation methodology of a signalized intersection based upon optimization of lane-uses on approaching lanes for an intersection. METHODS : For the optimization model of lane-uses, a set of constraints are set up to ensure feasibility and safety of the lane-uses, traffic flow, and signal settings. Minimization of demand to saturation flow ratio of a dual-ring signal control system is introduced to the objective function for delay minimization and effective signal operation. Using the optimized lane-uses, signal timings are optimized by delay-based model of TRANSYT-7F. RESULTS : It was found that the proposed objective function is great relation with delay time for an intersection. From the experimental results, the method was approved to be effective in reducing delay time. Especially, cases for two left-turn lanes reduced greater delays than those for a left turn lane. It is noticed that the cases for different traffic volume by approach reduced greater delays than those for the same traffic volume by approach. CONCLUSIONS : It was concluded that the objective function is proper for lane-uses optimizing model and the operation method is effective in reducing delay time for signalized intersections.

A Study on Providing Real-Time Route Guidance Information by Variable Massage Signs with Driver Behavior (운전자 행태를 고려한 VMS의 실시간 경로안내 정보제공에 관한 연구)

  • Lee, Chang-U;Jeong, Jin-Hyeok
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.65-79
    • /
    • 2006
  • The ATIS(Advance Traveler Information System), as one part of ITS, is a system aiming to disperse traffic volume on transportation networks by providing traffic information to transportation users on pre-trip and en-route trips. One of tools in ATIS is usage of VMS(Variable Message Signs). It provides to the drivers with direct information about state of processing direction. which is considered as the most effective method in ATIS. The purposes of providing VMS information are classified two categories. One is to provide simple information to drivers for their convenience. The other is to manage traffic demand to improve transportation network performance. However, for more effective and reliable VMS information, several strategies should be taken into account. The main VMS management strategy is "Traffic Diversion Strategy for minimum delay" when traffic congestion or incident are occurred. For effective operation. firstly. reasonable diversion traffic volume is determined by network traffic condition Secondly, it is necessary to make providing information strategy which reflects driver response behavior for controling diversion traffic volume. This paper focuses on the providing real-time route guidance information by VMS when congestion is occurred by the incidents. This sturdy estimates time-dependent system optimal diversion rate that inflects travel time and queue lengths using traffic flow simulation model on base Cellular Automata. In addition, route choice behavior models are developed using binary logit model for traffic information variable by traffic system controller. Finally, this study provides time-dependent VMS massage contents and degree of providing information in order to optimize the traffic flow.