• Title/Summary/Keyword: Trading Days

검색결과 64건 처리시간 0.024초

The Relationships between Abnormal Return, Trading Volume Activity and Trading Frequency Activity during the COVID-19 in Indonesia

  • SAPUTRA G, Enrico Fernanda;PULUNGAN, Nur Aisyah Febrianti;SUBIYANTO, Bambang
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권2호
    • /
    • pp.737-745
    • /
    • 2021
  • This study aims to determine whether there are differences in the average abnormal return, trading volume activity, and trading frequency activity in pharmaceutical stocks before and after the announcement of the first case of the coronavirus (COVID-19) in Indonesia. The sample was selected using a purposive sampling method and collected as many as nine pharmaceutical companies listed on the Indonesia Stock Exchange during 2019-2020. The data used in this study were secondary data in the form of daily data on stock closing prices, Composite Stock Price Index (IHSG), stock volume trading, number of shares outstanding, and stock trading frequency. This study was an event study with an observation period of 14 days, namely seven days before and seven days after the announcement of the coronavirus's first positive case in Indonesia. Hypothesis testing employed the paired sample t-test method. Based on the results, it was found that there was no difference in the average abnormal return of pharmaceutical stocks before and after the announcement of the first case of COVID-19. However, there was a difference in the average trading volume activity and the average trading frequency activity in pharmaceutical stocks before and after the announcement of the first case of COVID-19.

굴 산지시장의 위판량과 가격관계 (The Volume and Price Relationship of the Oyster Market in Producing Area)

  • 강석규
    • 수산경영론집
    • /
    • 제32권1호
    • /
    • pp.1-14
    • /
    • 2001
  • The research on the price-volume relation in the market is very important because it examines into regular phenomenon revealed by market participants including producers and middlemen. The purpose of this study is to investigate the relationship between price and trading volume in the oyster producing market. In order to accomplish the purpose of this study, the contents of empirical analysis include the time series properties of price and trading volume, the short-term and long-term relationships between price and trading volume, and the determinants of trading volume. The data used in this study correspond to daily price and trading volume covering the time period from January 1998 to April 2001. The empirical results can be summarized as follows : First, price and trading volume follow random walks and they are integrated of order 1. The first difference is necessary for satisfying the stationary conditions. Second, price and trading volume are cointegrated. This long-run relationship is stronger from trading volume to price. Third, error correction model suggests that feedback effect exists in the long-run and that price tends to lead trading volume by about five days in the short run, that is, to be required period by digging, conveying, and peeling oystershell for selling oyster. Fourth, price and price volatility is a determinant of trading volume. In particular, trading volume is a negative function of price. It is believed that the conclusion drawn from this study would provide a useful standard for the policy makers in charge of reducing the oyster price volatility risk caused by trading volume(selling quantities).

  • PDF

전역 변수를 이용한 유동 심볼 자동 주문 시스템의 설계 (A design of automatic trading system by dynamic symbol using global variables)

  • 고영훈;김윤상
    • 디지털산업정보학회논문지
    • /
    • 제6권3호
    • /
    • pp.211-219
    • /
    • 2010
  • This paper designs the dynamic symbol automatic trading system in Korean option market. This system is based on Multichart program which is convenient and efficient system trading tool. But the Multichart has an important restriction which has only one constant symbol per chart. This restriction causes very useful strategies impossible. The proposed design uses global variables, signal chart selection and position order exchange. So an automatic trading system with dynamic symbol works on Multichart program. To verify the proposed system, BS(Buythensell)-SB(Sellthenbuy) strategies are tested which uses the change of open-interest of stock index futures within a day. These strategies buy both call and put option in ATM at start candle and liquidate all at 12 o'clock and then sell both call and put option in ATM at 12 o'clock and also liquidate all at 14:40. From 23 March 2009 to 31 May 2010, 301-trading days, is adopted for experiment. As a result, the average daily profit rate of this simple strategies riches 1.09%. This profit rate is up to eight times of commision price which is 0.15 % per option trade. If the method which raises the profitable rate of wining trade or lower commission than 0.15% is found, these strategies make fascinated lossless trading system which is based on the proposed dynamic symbol automatic trading system.

구조적 변화 감지 과정이 포함된 페어트레이딩 알고리즘의 성과분석 (Performance of Pairs Trading Algorithm with the Implementation of Structural Changes Detection Procedure)

  • 정인곤;박대근;전덕빈
    • 한국경영과학회지
    • /
    • 제42권3호
    • /
    • pp.13-24
    • /
    • 2017
  • This paper aims to implement "structural changes detection procedure" in pairs trading algorithm and to show that the proposed approach outperforms the extant pair trading algorithm. Structural changes in pairs trading are defined in terms of changes in cointegrating factors and broken cointegration relationship. These changes are designed to test extant structural changes and unit root test methodologies. The simulation finds that expanding the changes in structure, increasing the mean reverting process of spread, and extending the consecutive days of broken cointegration will increase the performances of the proposed algorithm. Empirical study results are also consistent those of the simulation studies. The proposed algorithm outperforms the extant algorithm relative to risk and return given that the cumulative profit/loss has a significant upward-slope with minimal variance.

시계열 예측 모델을 활용한 암호화폐 투자 전략 개발 (Developing Cryptocurrency Trading Strategies with Time Series Forecasting Model)

  • 김현선;안재준
    • 산업경영시스템학회지
    • /
    • 제46권4호
    • /
    • pp.152-159
    • /
    • 2023
  • This study endeavors to enrich investment prospects in cryptocurrency by establishing a rationale for investment decisions. The primary objective involves evaluating the predictability of four prominent cryptocurrencies - Bitcoin, Ethereum, Litecoin, and EOS - and scrutinizing the efficacy of trading strategies developed based on the prediction model. To identify the most effective prediction model for each cryptocurrency annually, we employed three methodologies - AutoRegressive Integrated Moving Average (ARIMA), Long Short-Term Memory (LSTM), and Prophet - representing traditional statistics and artificial intelligence. These methods were applied across diverse periods and time intervals. The result suggested that Prophet trained on the previous 28 days' price history at 15-minute intervals generally yielded the highest performance. The results were validated through a random selection of 100 days (20 target dates per year) spanning from January 1st, 2018, to December 31st, 2022. The trading strategies were formulated based on the optimal-performing prediction model, grounded in the simple principle of assigning greater weight to more predictable assets. When the forecasting model indicates an upward trend, it is recommended to acquire the cryptocurrency with the investment amount determined by its performance. Experimental results consistently demonstrated that the proposed trading strategy yields higher returns compared to an equal portfolio employing a buy-and-hold strategy. The cryptocurrency trading model introduced in this paper carries two significant implications. Firstly, it facilitates the evolution of cryptocurrencies from speculative assets to investment instruments. Secondly, it plays a crucial role in advancing deep learning-based investment strategies by providing sound evidence for portfolio allocation. This addresses the black box issue, a notable weakness in deep learning, offering increased transparency to the model.

Exploring Stock Market Variables and Weighted Market Price Index: The Case of Jordan

  • ALADWAN, Mohammad;ALMAHARMEH, Mohammad;ALSINGLAWI, Omar
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권3호
    • /
    • pp.977-985
    • /
    • 2021
  • The main aim of the study is to provide empirical evidence about the association between stock market exchange data and weighted price index. This research utilized monthly reported data from the Amman stock exchange market (ASE) and the Central Bank of Jordan (CBJ). The weighted price index was employed as the dependent variable and the independent variables were weighted price index (WPI), turnover ratio (TOR), number of trading days (NTD), price-earnings ratio (PER), and dividends yield ratio (DY). The time period of the study was from January 2015 to October 2020. The study's methodology follows a quantitative approach using the multiple regression method to test the hypotheses of the study. The final results of the study provided conclusive evidence that the market-weighted price index is strongly and positively correlated to three predetermined variables, namely; turnover ratio, price-earnings ratio, and dividend yield but no evidence was obtained for the effect of the number of trading days. The finding of the current study proved that the market price index is not only influenced by macro factors, but also by other variables assumed to not beneficial for the judgment of price index movements.

Factors Affecting the Volatility of Post-IPO Stock Prices: Evidence from State-Owned Enterprises in Hanoi Stock Exchange

  • LE, Phuong Lan;THACH, Duc Khoi
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권5호
    • /
    • pp.409-419
    • /
    • 2022
  • This paper examines the post-IPO price volatility in the first trading days after the IPO of SOEs that carry out equitization, on a sample of 76 IPOs on the Hanoi Stock Exchange (Vietnam) in the period 2013-2018. Oversubscription rate, firm size, issuance size, internal equity ownership, and listing delay are all factors that influence IPO price volatility in a primitive stock market. The results showed that the average initial market-adjusted return for the first three trading days was -11.95%; -9.58% and -7.29% and the level of price volatility is related to the rate of oversubscription and company size. Issuance price, issuance size, internal equity holdings, and listing delay do not seem to contribute significantly to post-IPO share prices. Individual investors based their valuation on information released during and after the IPO. In general, the number of IPOs that yield positive and negative returns in the first trading days is about the same, indicating that the two phenomena of undervaluation and overvaluation still occur in the process of valuing shares of Vietnamese SOEs for IPOs.

Investor Behavior Responding to Changes in Trading Halt Conditions: Empirical Evidence from the Indonesia Stock Exchange

  • RAHIM, Rida;SULAIMAN, Desyetti;HUSNI, Tafdil;WIRANDA, Nadya Ade
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권4호
    • /
    • pp.135-143
    • /
    • 2021
  • Information has an essential role in decision-making for investors who will invest in financial markets, especially regarding the policies on the condition of COVID-19. The purpose of this study is to determine the market reaction to the information published by the government regarding the policy changes to the provisions of Trading Halt on the IDX in an emergency using the event study method. The population in this study was companies listed on the Indonesia Stock Exchange in March 2020; the sample selection technique was purposive sampling. Data analysis used a normality test and one sample T-test. The results of the study found that there were significant abnormal returns on the announcement date, negative abnormal returns around the announcement date, and significant trading volume activity occurring three days after the announcement. The existence of a significant positive abnormal return on the announcement date indicates that the market responds quickly to information published by the government. The practical implication of this research can be taken into consideration for investors in making investment decisions to analyze and determine the right investment options so that investors can minimize the risk of their investment and maximize the profits they want to achieve.

SVM을 이용한 시스템트레이딩전략의 선택모형 (Selection Model of System Trading Strategies using SVM)

  • 박성철;김선웅;최흥식
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.59-71
    • /
    • 2014
  • KOSPI200 선물 트레이딩을 위해 업계에서는 여러 전략으로 포트폴리오를 구성해서 운용한다. 동일한 전략 모음을 갖고 있더라도 포트폴리오를 어떻게 구성하느냐에 따라 수익은 크게 차이가 난다. 시장 상황에 맞는 전략들로 포트폴리오를 구성하는 것은 오랜 경험과 탁월한 노하우가 있어야하는 어려운 작업이다. 본 논문에서는 SVM을 활용하여 쉽고 빠르게 적절한 전략 포트폴리오를 구성하는 방법을 제시하였다. 본 논문에서 제안한 시스템의 성과는 벤치마킹의 성과와 비교하여 2배 이상의 수익을 내는 것을 확인하였다. 1990.01.03~2011.11.04 동안의 KOSPI200 데이터 중 이전 80%의 데이터로 학습을 하고 최근 20%의 데이터로 성능을 시험하였다. 각 전략별로 선택여부를 판별하는 SVM모델을 만들고 그 결과를 바탕으로 포트폴리오를 구성하였다. 벤치마킹을 위해 KOSPI200 선물을 2계약 매수한 경우의 수익, 시험 시작 직전 30일간 최고 수익을 낸 2개 전략의 수익, 실제 최고 수익을 낸 전략 2개를 보유했을 때의 수익과 비교하였다. 매매 비용을 반영하지 않을 때는 벤치마킹은 132.2~510.37pt의 수익을 냈고, 본 시스템은 1072.36~1140.91pt의 수익을 보여주었다. 그리고 거래비용을 감안하면 벤치마킹은 130.44~502.41pt의 수익을 냈고, 본 시스템은 706.22pt~768.95pt의 수익을 나타내었다. 본 논문은 기계학습을 통한 전략 포트폴리오를 구성하는 방안이 유의미하며 실전에 활용할 수 있음을 보여주었다. 이를 바탕으로 여러 전략과 다양한 시장에 적용해서 안정성을 검증하면 견고한 상용 솔루션으로 발전시킬 수 있을 것이다. 그리고 자금관리 기법을 더 반영한다면 수익을 더욱 크게 향상시킬 수 있을 것이다.

Herd behavior and volatility in financial markets

  • Park, Beum-Jo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권6호
    • /
    • pp.1199-1215
    • /
    • 2011
  • Relaxing an unrealistic assumption of a representative percolation model, this paper demonstrates that herd behavior leads to a high increase in volatility but not trading volume, in contrast with information flows that give rise to increases in both volatility and trading volume. Although detecting herd behavior has posed a great challenge due to its empirical difficulty, this paper proposes a new methodology for detecting trading days with herding. Furthermore, this paper suggests a herd-behavior-stochastic-volatility model, which accounts for herding in financial markets. Strong evidence in favor of the model specification over the standard stochastic volatility model is based on empirical application with high frequency data in the Korean equity market, strongly supporting the intuition that herd behavior causes excess volatility. In addition, this research indicates that strong persistence in volatility, which is a prevalent feature in financial markets, is likely attributed to herd behavior rather than news.