• Title/Summary/Keyword: Trading Days

Search Result 64, Processing Time 0.033 seconds

The Relationships between Abnormal Return, Trading Volume Activity and Trading Frequency Activity during the COVID-19 in Indonesia

  • SAPUTRA G, Enrico Fernanda;PULUNGAN, Nur Aisyah Febrianti;SUBIYANTO, Bambang
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.737-745
    • /
    • 2021
  • This study aims to determine whether there are differences in the average abnormal return, trading volume activity, and trading frequency activity in pharmaceutical stocks before and after the announcement of the first case of the coronavirus (COVID-19) in Indonesia. The sample was selected using a purposive sampling method and collected as many as nine pharmaceutical companies listed on the Indonesia Stock Exchange during 2019-2020. The data used in this study were secondary data in the form of daily data on stock closing prices, Composite Stock Price Index (IHSG), stock volume trading, number of shares outstanding, and stock trading frequency. This study was an event study with an observation period of 14 days, namely seven days before and seven days after the announcement of the coronavirus's first positive case in Indonesia. Hypothesis testing employed the paired sample t-test method. Based on the results, it was found that there was no difference in the average abnormal return of pharmaceutical stocks before and after the announcement of the first case of COVID-19. However, there was a difference in the average trading volume activity and the average trading frequency activity in pharmaceutical stocks before and after the announcement of the first case of COVID-19.

The Volume and Price Relationship of the Oyster Market in Producing Area (굴 산지시장의 위판량과 가격관계)

  • 강석규
    • The Journal of Fisheries Business Administration
    • /
    • v.32 no.1
    • /
    • pp.1-14
    • /
    • 2001
  • The research on the price-volume relation in the market is very important because it examines into regular phenomenon revealed by market participants including producers and middlemen. The purpose of this study is to investigate the relationship between price and trading volume in the oyster producing market. In order to accomplish the purpose of this study, the contents of empirical analysis include the time series properties of price and trading volume, the short-term and long-term relationships between price and trading volume, and the determinants of trading volume. The data used in this study correspond to daily price and trading volume covering the time period from January 1998 to April 2001. The empirical results can be summarized as follows : First, price and trading volume follow random walks and they are integrated of order 1. The first difference is necessary for satisfying the stationary conditions. Second, price and trading volume are cointegrated. This long-run relationship is stronger from trading volume to price. Third, error correction model suggests that feedback effect exists in the long-run and that price tends to lead trading volume by about five days in the short run, that is, to be required period by digging, conveying, and peeling oystershell for selling oyster. Fourth, price and price volatility is a determinant of trading volume. In particular, trading volume is a negative function of price. It is believed that the conclusion drawn from this study would provide a useful standard for the policy makers in charge of reducing the oyster price volatility risk caused by trading volume(selling quantities).

  • PDF

A design of automatic trading system by dynamic symbol using global variables (전역 변수를 이용한 유동 심볼 자동 주문 시스템의 설계)

  • Ko, Young Hoon;Kim, Yoon Sang
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.3
    • /
    • pp.211-219
    • /
    • 2010
  • This paper designs the dynamic symbol automatic trading system in Korean option market. This system is based on Multichart program which is convenient and efficient system trading tool. But the Multichart has an important restriction which has only one constant symbol per chart. This restriction causes very useful strategies impossible. The proposed design uses global variables, signal chart selection and position order exchange. So an automatic trading system with dynamic symbol works on Multichart program. To verify the proposed system, BS(Buythensell)-SB(Sellthenbuy) strategies are tested which uses the change of open-interest of stock index futures within a day. These strategies buy both call and put option in ATM at start candle and liquidate all at 12 o'clock and then sell both call and put option in ATM at 12 o'clock and also liquidate all at 14:40. From 23 March 2009 to 31 May 2010, 301-trading days, is adopted for experiment. As a result, the average daily profit rate of this simple strategies riches 1.09%. This profit rate is up to eight times of commision price which is 0.15 % per option trade. If the method which raises the profitable rate of wining trade or lower commission than 0.15% is found, these strategies make fascinated lossless trading system which is based on the proposed dynamic symbol automatic trading system.

Performance of Pairs Trading Algorithm with the Implementation of Structural Changes Detection Procedure (구조적 변화 감지 과정이 포함된 페어트레이딩 알고리즘의 성과분석)

  • Jung, In Kon;Park, Dae Keun;Jun, Duk Bin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.42 no.3
    • /
    • pp.13-24
    • /
    • 2017
  • This paper aims to implement "structural changes detection procedure" in pairs trading algorithm and to show that the proposed approach outperforms the extant pair trading algorithm. Structural changes in pairs trading are defined in terms of changes in cointegrating factors and broken cointegration relationship. These changes are designed to test extant structural changes and unit root test methodologies. The simulation finds that expanding the changes in structure, increasing the mean reverting process of spread, and extending the consecutive days of broken cointegration will increase the performances of the proposed algorithm. Empirical study results are also consistent those of the simulation studies. The proposed algorithm outperforms the extant algorithm relative to risk and return given that the cumulative profit/loss has a significant upward-slope with minimal variance.

Developing Cryptocurrency Trading Strategies with Time Series Forecasting Model (시계열 예측 모델을 활용한 암호화폐 투자 전략 개발)

  • Hyun-Sun Kim;Jae Joon Ahn
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.152-159
    • /
    • 2023
  • This study endeavors to enrich investment prospects in cryptocurrency by establishing a rationale for investment decisions. The primary objective involves evaluating the predictability of four prominent cryptocurrencies - Bitcoin, Ethereum, Litecoin, and EOS - and scrutinizing the efficacy of trading strategies developed based on the prediction model. To identify the most effective prediction model for each cryptocurrency annually, we employed three methodologies - AutoRegressive Integrated Moving Average (ARIMA), Long Short-Term Memory (LSTM), and Prophet - representing traditional statistics and artificial intelligence. These methods were applied across diverse periods and time intervals. The result suggested that Prophet trained on the previous 28 days' price history at 15-minute intervals generally yielded the highest performance. The results were validated through a random selection of 100 days (20 target dates per year) spanning from January 1st, 2018, to December 31st, 2022. The trading strategies were formulated based on the optimal-performing prediction model, grounded in the simple principle of assigning greater weight to more predictable assets. When the forecasting model indicates an upward trend, it is recommended to acquire the cryptocurrency with the investment amount determined by its performance. Experimental results consistently demonstrated that the proposed trading strategy yields higher returns compared to an equal portfolio employing a buy-and-hold strategy. The cryptocurrency trading model introduced in this paper carries two significant implications. Firstly, it facilitates the evolution of cryptocurrencies from speculative assets to investment instruments. Secondly, it plays a crucial role in advancing deep learning-based investment strategies by providing sound evidence for portfolio allocation. This addresses the black box issue, a notable weakness in deep learning, offering increased transparency to the model.

Exploring Stock Market Variables and Weighted Market Price Index: The Case of Jordan

  • ALADWAN, Mohammad;ALMAHARMEH, Mohammad;ALSINGLAWI, Omar
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.977-985
    • /
    • 2021
  • The main aim of the study is to provide empirical evidence about the association between stock market exchange data and weighted price index. This research utilized monthly reported data from the Amman stock exchange market (ASE) and the Central Bank of Jordan (CBJ). The weighted price index was employed as the dependent variable and the independent variables were weighted price index (WPI), turnover ratio (TOR), number of trading days (NTD), price-earnings ratio (PER), and dividends yield ratio (DY). The time period of the study was from January 2015 to October 2020. The study's methodology follows a quantitative approach using the multiple regression method to test the hypotheses of the study. The final results of the study provided conclusive evidence that the market-weighted price index is strongly and positively correlated to three predetermined variables, namely; turnover ratio, price-earnings ratio, and dividend yield but no evidence was obtained for the effect of the number of trading days. The finding of the current study proved that the market price index is not only influenced by macro factors, but also by other variables assumed to not beneficial for the judgment of price index movements.

Factors Affecting the Volatility of Post-IPO Stock Prices: Evidence from State-Owned Enterprises in Hanoi Stock Exchange

  • LE, Phuong Lan;THACH, Duc Khoi
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.5
    • /
    • pp.409-419
    • /
    • 2022
  • This paper examines the post-IPO price volatility in the first trading days after the IPO of SOEs that carry out equitization, on a sample of 76 IPOs on the Hanoi Stock Exchange (Vietnam) in the period 2013-2018. Oversubscription rate, firm size, issuance size, internal equity ownership, and listing delay are all factors that influence IPO price volatility in a primitive stock market. The results showed that the average initial market-adjusted return for the first three trading days was -11.95%; -9.58% and -7.29% and the level of price volatility is related to the rate of oversubscription and company size. Issuance price, issuance size, internal equity holdings, and listing delay do not seem to contribute significantly to post-IPO share prices. Individual investors based their valuation on information released during and after the IPO. In general, the number of IPOs that yield positive and negative returns in the first trading days is about the same, indicating that the two phenomena of undervaluation and overvaluation still occur in the process of valuing shares of Vietnamese SOEs for IPOs.

Investor Behavior Responding to Changes in Trading Halt Conditions: Empirical Evidence from the Indonesia Stock Exchange

  • RAHIM, Rida;SULAIMAN, Desyetti;HUSNI, Tafdil;WIRANDA, Nadya Ade
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.4
    • /
    • pp.135-143
    • /
    • 2021
  • Information has an essential role in decision-making for investors who will invest in financial markets, especially regarding the policies on the condition of COVID-19. The purpose of this study is to determine the market reaction to the information published by the government regarding the policy changes to the provisions of Trading Halt on the IDX in an emergency using the event study method. The population in this study was companies listed on the Indonesia Stock Exchange in March 2020; the sample selection technique was purposive sampling. Data analysis used a normality test and one sample T-test. The results of the study found that there were significant abnormal returns on the announcement date, negative abnormal returns around the announcement date, and significant trading volume activity occurring three days after the announcement. The existence of a significant positive abnormal return on the announcement date indicates that the market responds quickly to information published by the government. The practical implication of this research can be taken into consideration for investors in making investment decisions to analyze and determine the right investment options so that investors can minimize the risk of their investment and maximize the profits they want to achieve.

Selection Model of System Trading Strategies using SVM (SVM을 이용한 시스템트레이딩전략의 선택모형)

  • Park, Sungcheol;Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.59-71
    • /
    • 2014
  • System trading is becoming more popular among Korean traders recently. System traders use automatic order systems based on the system generated buy and sell signals. These signals are generated from the predetermined entry and exit rules that were coded by system traders. Most researches on system trading have focused on designing profitable entry and exit rules using technical indicators. However, market conditions, strategy characteristics, and money management also have influences on the profitability of the system trading. Unexpected price deviations from the predetermined trading rules can incur large losses to system traders. Therefore, most professional traders use strategy portfolios rather than only one strategy. Building a good strategy portfolio is important because trading performance depends on strategy portfolios. Despite of the importance of designing strategy portfolio, rule of thumb methods have been used to select trading strategies. In this study, we propose a SVM-based strategy portfolio management system. SVM were introduced by Vapnik and is known to be effective for data mining area. It can build good portfolios within a very short period of time. Since SVM minimizes structural risks, it is best suitable for the futures trading market in which prices do not move exactly the same as the past. Our system trading strategies include moving-average cross system, MACD cross system, trend-following system, buy dips and sell rallies system, DMI system, Keltner channel system, Bollinger Bands system, and Fibonacci system. These strategies are well known and frequently being used by many professional traders. We program these strategies for generating automated system signals for entry and exit. We propose SVM-based strategies selection system and portfolio construction and order routing system. Strategies selection system is a portfolio training system. It generates training data and makes SVM model using optimal portfolio. We make $m{\times}n$ data matrix by dividing KOSPI 200 index futures data with a same period. Optimal strategy portfolio is derived from analyzing each strategy performance. SVM model is generated based on this data and optimal strategy portfolio. We use 80% of the data for training and the remaining 20% is used for testing the strategy. For training, we select two strategies which show the highest profit in the next day. Selection method 1 selects two strategies and method 2 selects maximum two strategies which show profit more than 0.1 point. We use one-against-all method which has fast processing time. We analyse the daily data of KOSPI 200 index futures contracts from January 1990 to November 2011. Price change rates for 50 days are used as SVM input data. The training period is from January 1990 to March 2007 and the test period is from March 2007 to November 2011. We suggest three benchmark strategies portfolio. BM1 holds two contracts of KOSPI 200 index futures for testing period. BM2 is constructed as two strategies which show the largest cumulative profit during 30 days before testing starts. BM3 has two strategies which show best profits during testing period. Trading cost include brokerage commission cost and slippage cost. The proposed strategy portfolio management system shows profit more than double of the benchmark portfolios. BM1 shows 103.44 point profit, BM2 shows 488.61 point profit, and BM3 shows 502.41 point profit after deducting trading cost. The best benchmark is the portfolio of the two best profit strategies during the test period. The proposed system 1 shows 706.22 point profit and proposed system 2 shows 768.95 point profit after deducting trading cost. The equity curves for the entire period show stable pattern. With higher profit, this suggests a good trading direction for system traders. We can make more stable and more profitable portfolios if we add money management module to the system.

Herd behavior and volatility in financial markets

  • Park, Beum-Jo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1199-1215
    • /
    • 2011
  • Relaxing an unrealistic assumption of a representative percolation model, this paper demonstrates that herd behavior leads to a high increase in volatility but not trading volume, in contrast with information flows that give rise to increases in both volatility and trading volume. Although detecting herd behavior has posed a great challenge due to its empirical difficulty, this paper proposes a new methodology for detecting trading days with herding. Furthermore, this paper suggests a herd-behavior-stochastic-volatility model, which accounts for herding in financial markets. Strong evidence in favor of the model specification over the standard stochastic volatility model is based on empirical application with high frequency data in the Korean equity market, strongly supporting the intuition that herd behavior causes excess volatility. In addition, this research indicates that strong persistence in volatility, which is a prevalent feature in financial markets, is likely attributed to herd behavior rather than news.