최근 컴퓨터를 이용하여 효과적인 트레이드를 하려는 투자자들이 늘고 있다. 본 논문에서는 많은 인공지능 방법론 중에서 강화학습(reinforcement learning)을 이용하여 효과적으로 트레이딩하는 방법에 대해서 다루려한다. 특히 강화학습 중에서 natural policy gradient를 이용하여 actor의 파라미터를 업데이트하고, value function을 효과적으로 추정하기 위해 RLS(recursive least-squares) 기법으로 critic 부분을 업데이트하는 RLS 기반 natural actor-critic 알고리즘을 이용하여 트레이딩을 수행하는 전략에 대한 가능성을 살펴 보기로 한다.
In the previous double auction research for the market optimization, two basic assumptions are usually applied - (1) each trader has a linear or quasi-linear utility function of price and quantity, and (2) buyers as well as sellers have identical utility functions. However, in practice, each buyer and seller in a double auction market may have diverse utility functions for trading goods. Therefore, a flexible and integrated double auction mechanism that can integrate all traders' diverse utility functions is necessary. In particular, the flexible mechanism is more useful in a synchronous double auction because traders can properly change utilities in each round. Therefore, in this paper, we propose a flexible synchronous double auction mechanism in which traders can express diverse utility functions for the price and quantity of the goods, and optimal total market utility is guaranteed. In order to optimize the total market utility which consists of multiple complex utility functions of traders. We show the viability of the proposed mechanism through a several simulation experiments.
We propose a new reliable SVD-based watermarking scheme having high fidelity and strong robustness with no false-positive problem. Each column of the principal component of a watermark image is embedded into singular values of LL, LH, HL and HH sub-bands of cover image with different scale factors. Each scale factor is optimized by trading-off fidelity and robustness using Differential Evolution (DE) algorithm. The proposed scheme improves fidelity and robustness of existing reliable SVD based watermarking schemes without any false-positive problem. Index Terms - watermarking, reliable SVD, DWT, principal component, Differential Evolution.
The amount of digital content grows exponentially by the development of the internet and the change of computing environments and the target also is getting wider. The industry using this digital content has been growing greatly. However, the distribution of pirated digital content is increasing using internet because digital content is easy to store and transmit and the damage is growing. In this paper, we propose safety trading system which can conceal the author's information safely in digital content in order to block illegal distribution of digital content. ARIA encryption algorithm is used to protect the concealed information of author in digital content and it is a help to track the illegal traders by doing fingerprinting of buyer information to digital content and managing the transaction information. The technical support for copyright dispute is to allow by providing the capability to verify illegal edit to original digital contents.
We proposed an improved reliable SVD-based watermarking scheme resistant to geometric attacks while having high fidelity with no false-positive problem. Principal components of a watermark image are embedded into singular values of LL, LH, HL, and HH sub-bands of a transformed cover image by RDWT(redundant discrete wavelet transform) with optimal scale factors. Each scale factor is generated by trading-off fidelity and robustness using Differential Evolution (DE) algorithm. Zernike Moment (ZM) is used to estimate the geometric distortion and to correct the watermarked image before extracting watermark. The proposed scheme improves fidelity and robustness of existing reliable SVD based watermarking schemes while resisting to geometric attacks.
본 연구는 한국 주식 시장인 KRX 데이터에 중점을 둔 투자 전략의 최적화를 목표로 하였다. 전통적인 기술 분석 방법은 투자자들의 경험에 의존하여 파라미터를 선택하였다. 하지만 이 연구에서는 기존의 경험에 기반한 파라미터 선택 대신 유전 알고리즘을 사용하여 파라미터를 최적화했다. 결과적으로, 이 전략은 상승장과 하락장 모두에서 buy-and-hold 전략보다 더 나은 성과를 보였다. 이는 기술 분석의 파라미터 최적화의 중요성을 강조하며, 더 효과적인 투자 전략 개발의 가능성을 보여준다.
최근 고속의 데이터 전송이 가능하며 전송율과 신호대잡음비를 선형적으로 절충할 수 있는 UWB (ultra wide-band) 무선통신 기술이 근거리 무선 통신망 분야에서 관심이 고조되고 있다. UWB 무선통신 기술의 장점을 활용하고 UWB 시스템과 공존하는 시스템에 대한 간섭을 최소화하기 위해서는 수신 단에서의 신호대잡응비를 알아 야 한다. 본 논문에서는 UWB 신호에 대하여 수신단의 상관기의 출력만을 이용하여 펄스에너지대잡음비 Ep/No 를 추정하는 알고리즘을 제안하고 이 알고리즘의 성능을 모의실험을 통하여 평가하였다 모의실험 결과에 의하면 추정치의 평균값은 신호의 실제 Ep/No에 대하여 표준편차는 최대 1.l3dB 이내 이며 실제 값과 추정치간의 오차가 $\pm$3dB 이상 발생한 경우는 블록 크기가 500이며 Ep/No 가 2dB 경우에서만 발생하고 나머지 경우에서는 발생 하지 않았다 전반적으로 신호의 실제 Ep/No 가 증가할수록 정밀도가 증가하고 사용된 데이터 블록의 크기가 증가 할수록 추정 성능도 비례하여 개선되는 것으로 나타났다. 제안된 알고리즘의 특징은 추정 과정에서 추가척언 특정 형태의 훈련용 신호를 전송하지 않기 때문에 유효 데이터 전송률을 감소시키지 않는다는 점이다.
In this paper, we develop a portfolio selection model that can be used to invest in markets with margin requirements such as the foreign exchange market. An investment algorithm to implement the proposed portfolio selection model based on objective historical data is also presented. We further conduct empirical analysis on the performance of a hypothetical investment in the foreign exchange market, using the proposed portfolio selection model and investment algorithm. Using 7 currency pairs that recorded the highest trading volume in the foreign exchange market during the most recent 10 years, we compare the performance of 1) the Dollar Index, 2) a 1/N Portfolio which equally allocates capital to all N assets considered for investment, and 3) a hypothetical investment portfolio selected and managed according to the portfolio selection model and investment algorithm proposed in this paper. Performance is compared in terms of accumulated returns and Sharpe ratios for the 10-year period from January 2003 to December 2012. The results show that the hypothetical investment portfolio outperforms both benchmarks, with superior performance especially during the period following financial crisis. Overall, this paper suggests that a mathematical approach for selecting and managing an optimal investment portfolio based on objective data can achieve outstanding performance in the foreign exchange market.
정보보호를 위한 암호 시스템을 임베디드 장치에서 개발할 경우 발생할 수 있는 구현상의 문제점을 이용하여 비밀키를 추출하기 위한 여러 부채널 공격들이 시도되어 왔다. 특히, 공개 키 암호 시스템에서 사용하는 멱승(exponentiation) 연산은 기본적으로 곱셈과 자승으로 구현되어 왔으나, 최근 부채널 공격에 대응하기 위한 방법으로 곱셈을 자승 연산으로 대체하는 새로운 Square Always 멱승 알고리듬이 제안되었다. 본 논문에서는 현재까지 부채널 공격에 안전하다고 알려진 Right-to-Left형태의 Square Always 멱승 알고리듬을 공격할 수 있는 기지 전력 충돌 분석(Known Power Collision Analysis) 공격과 변형된 Doubling 공격을 제안한다. 또한, 오류 주입 공격 후 충돌 쌍을 찾아내는 전력 분석 기법을 이용하여 비밀 키를 찾아낼 수 있는 충돌 기반의 조합 공격(Collision-based Combined Attack)을 제안한다. 그리고 Square Always 멱승 알고리듬이 제안한 부채널 공격들에 의해 취약한 특성을 가지고 있음을 컴퓨터 시뮬레이션을 통해 확인하였다.
최근 정보기술의 발전으로 복잡하고 방대한 양의 주가 데이터에 대한 실시간 분석이 가능해지면서 인공지능 기법을 활용해 주식 시장의 등락을 예측하고, 이를 기반으로 매매 거래를 수행하는 트레이딩 시스템에 대한 세간의 관심이 높아지고 있다. 본 연구는 이러한 트레이딩 시스템의 시장 예측 알고리즘으로 활용될 수 있는 새로운 주식 시장 등락 예측 모형을 제시한다. 본 연구의 제안 모형은 ${\pi}$-퍼지 논리를 이용해 모든 입력변수의 차원을 low, medium, high로 퍼지변환한 입력값을 대상으로 Support Vector Machine(SVM)을 적용하여 익일 시장의 등락을 예측하도록 설계되었다. 그런데 이 경우 입력변수의 수가 3배로 늘어나기 때문에, 적절한 입력변수의 선택이 요구된다. 이에 본 연구에서는 유전자 알고리즘을 활용하여 입력변수 선택 집합을 최적화하도록 하였으며, 동시에 ${\pi}$-퍼지 논리 및 SVM에 적용되는 조절 파라미터들의 값도 함께 최적화 하도록 하였다. 모형의 성능을 검증하기 위해, 본 연구에서는 지난 2004년부터 2013년까지의 10년치 국내 주식시장 데이터를 기반으로 한 KOSPI 200 지수의 등락 예측에 제안모형을 적용해 보았다. 이 때, 비교모형으로 로지스틱 회귀모형, 다중판별분석, 의사결정나무, 인공신경망, SVM, 퍼지SVM 등도 함께 적용시켜 성과를 정밀하게 검증해 보고자 하였다. 그 결과, 제안모형이 예측 정확도는 물론 투자수익률(Return on Investment) 측면에서도 다른 모든 비교모형들에 비해 월등히 우수한 성능을 보임을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.