Empirical Analysis on Bitcoin Price Change by Consumer, Industry and Macro-Economy Variables (비트코인 가격 변화에 관한 실증분석: 소비자, 산업, 그리고 거시변수를 중심으로)
-
- Journal of Intelligence and Information Systems
- /
- v.24 no.2
- /
- pp.195-220
- /
- 2018
In this study, we conducted an empirical analysis of the factors that affect the change of Bitcoin Closing Price. Previous studies have focused on the security of the block chain system, the economic ripple effects caused by the cryptocurrency, legal implications and the acceptance to consumer about cryptocurrency. In various area, cryptocurrency was studied and many researcher and people including government, regardless of country, try to utilize cryptocurrency and applicate to its technology. Despite of rapid and dramatic change of cryptocurrencies' price and growth of its effects, empirical study of the factors affecting the price change of cryptocurrency was lack. There were only a few limited studies, business reports and short working paper. Therefore, it is necessary to determine what factors effect on the change of closing Bitcoin price. For analysis, hypotheses were constructed from three dimensions of consumer, industry, and macroeconomics for analysis, and time series data were collected for variables of each dimension. Consumer variables consist of search traffic of Bitcoin, search traffic of bitcoin ban, search traffic of ransomware and search traffic of war. Industry variables were composed GPU vendors' stock price and memory vendors' stock price. Macro-economy variables were contemplated such as U.S. dollar index futures, FOMC policy interest rates, WTI crude oil price. Using above variables, we did times series regression analysis to find relationship between those variables and change of Bitcoin Closing Price. Before the regression analysis to confirm the relationship between change of Bitcoin Closing Price and the other variables, we performed the Unit-root test to verifying the stationary of time series data to avoid spurious regression. Then, using a stationary data, we did the regression analysis. As a result of the analysis, we found that the change of Bitcoin Closing Price has negative effects with search traffic of 'Bitcoin Ban' and US dollar index futures, while change of GPU vendors' stock price and change of WTI crude oil price showed positive effects. In case of 'Bitcoin Ban', it is directly determining the maintenance or abolition of Bitcoin trade, that's why consumer reacted sensitively and effected on change of Bitcoin Closing Price. GPU is raw material of Bitcoin mining. Generally, increasing of companies' stock price means the growth of the sales of those companies' products and services. GPU's demands increases are indirectly reflected to the GPU vendors' stock price. Making an interpretation, a rise in prices of GPU has put a crimp on the mining of Bitcoin. Consequently, GPU vendors' stock price effects on change of Bitcoin Closing Price. And we confirmed U.S. dollar index futures moved in the opposite direction with change of Bitcoin Closing Price. It moved like Gold. Gold was considered as a safe asset to consumers and it means consumer think that Bitcoin is a safe asset. On the other hand, WTI oil price went Bitcoin Closing Price's way. It implies that Bitcoin are regarded to investment asset like raw materials market's product. The variables that were not significant in the analysis were search traffic of bitcoin, search traffic of ransomware, search traffic of war, memory vendor's stock price, FOMC policy interest rates. In search traffic of bitcoin, we judged that interest in Bitcoin did not lead to purchase of Bitcoin. It means search traffic of Bitcoin didn't reflect all of Bitcoin's demand. So, it implies there are some factors that regulate and mediate the Bitcoin purchase. In search traffic of ransomware, it is hard to say concern of ransomware determined the whole Bitcoin demand. Because only a few people damaged by ransomware and the percentage of hackers requiring Bitcoins was low. Also, its information security problem is events not continuous issues. Search traffic of war was not significant. Like stock market, generally it has negative in relation to war, but exceptional case like Gulf war, it moves stakeholders' profits and environment. We think that this is the same case. In memory vendor stock price, this is because memory vendors' flagship products were not VRAM which is essential for Bitcoin supply. In FOMC policy interest rates, when the interest rate is low, the surplus capital is invested in securities such as stocks. But Bitcoin' price fluctuation was large so it is not recognized as an attractive commodity to the consumers. In addition, unlike the stock market, Bitcoin doesn't have any safety policy such as Circuit breakers and Sidecar. Through this study, we verified what factors effect on change of Bitcoin Closing Price, and interpreted why such change happened. In addition, establishing the characteristics of Bitcoin as a safe asset and investment asset, we provide a guide how consumer, financial institution and government organization approach to the cryptocurrency. Moreover, corroborating the factors affecting change of Bitcoin Closing Price, researcher will get some clue and qualification which factors have to be considered in hereafter cryptocurrency study.
In franchise business, exclusive sales territory (sometimes EST in table) protection is a very important issue from an economic, social and political point of view. It affects the growth and survival of both franchisor and franchisee and often raises issues of social and political conflicts. When franchisee is not familiar with related laws and regulations, franchisor has high chance to utilize it. Exclusive sales territory protection by the manufacturer and distributors (wholesalers or retailers) means sales area restriction by which only certain distributors have right to sell products or services. The distributor, who has been granted exclusive sales territories, can protect its own territory, whereas he may be prohibited from entering in other regions. Even though exclusive sales territory is a quite critical problem in franchise business, there is not much rigorous research about the reason, results, evaluation, and future direction based on empirical data. This paper tries to address this problem not only from logical and nomological validity, but from empirical validation. While we purse an empirical analysis, we take into account the difficulties of real data collection and statistical analysis techniques. We use a set of disclosure document data collected by Korea Fair Trade Commission, instead of conventional survey method which is usually criticized for its measurement error. Existing theories about exclusive sales territory can be summarized into two groups as shown in the table below. The first one is about the effectiveness of exclusive sales territory from both franchisor and franchisee point of view. In fact, output of exclusive sales territory can be positive for franchisors but negative for franchisees. Also, it can be positive in terms of sales but negative in terms of profit. Therefore, variables and viewpoints should be set properly. The other one is about the motive or reason why exclusive sales territory is protected. The reasons can be classified into four groups - industry characteristics, franchise systems characteristics, capability to maintain exclusive sales territory, and strategic decision. Within four groups of reasons, there are more specific variables and theories as below. Based on these theories, we develop nine hypotheses which are briefly shown in the last table below with the results. In order to validate the hypothesis, data is collected from government (FTC) homepage which is open source. The sample consists of 1,896 franchisors and it contains about three year operation data, from 2006 to 2008. Within the samples, 627 have exclusive sales territory protection policy and the one with exclusive sales territory policy is not evenly distributed over 19 representative industries. Additional data are also collected from another government agency homepage, like Statistics Korea. Also, we combine data from various secondary sources to create meaningful variables as shown in the table below. All variables are dichotomized by mean or median split if they are not inherently dichotomized by its definition, since each hypothesis is composed by multiple variables and there is no solid statistical technique to incorporate all these conditions to test the hypotheses. This paper uses a simple chi-square test because hypotheses and theories are built upon quite specific conditions such as industry type, economic condition, company history and various strategic purposes. It is almost impossible to find all those samples to satisfy them and it can't be manipulated in experimental settings. However, more advanced statistical techniques are very good on clean data without exogenous variables, but not good with real complex data. The chi-square test is applied in a way that samples are grouped into four with two criteria, whether they use exclusive sales territory protection or not, and whether they satisfy conditions of each hypothesis. So the proportion of sample franchisors which satisfy conditions and protect exclusive sales territory, does significantly exceed the proportion of samples that satisfy condition and do not protect. In fact, chi-square test is equivalent with the Poisson regression which allows more flexible application. As results, only three hypotheses are accepted. When attitude toward the risk is high so loyalty fee is determined according to sales performance, EST protection makes poor results as expected. And when franchisor protects EST in order to recruit franchisee easily, EST protection makes better results. Also, when EST protection is to improve the efficiency of franchise system as a whole, it shows better performances. High efficiency is achieved as EST prohibits the free riding of franchisee who exploits other's marketing efforts, and it encourages proper investments and distributes franchisee into multiple regions evenly. Other hypotheses are not supported in the results of significance testing. Exclusive sales territory should be protected from proper motives and administered for mutual benefits. Legal restrictions driven by the government agency like FTC could be misused and cause mis-understandings. So there need more careful monitoring on real practices and more rigorous studies by both academicians and practitioners.
Services using artificial intelligence have begun to emerge in daily life. Artificial intelligence is applied to products in consumer electronics and communications such as artificial intelligence refrigerators and speakers. In the financial sector, using Kensho's artificial intelligence technology, the process of the stock trading system in Goldman Sachs was improved. For example, two stock traders could handle the work of 600 stock traders and the analytical work for 15 people for 4weeks could be processed in 5 minutes. Especially, big data analysis through machine learning among artificial intelligence fields is actively applied throughout the financial industry. The stock market analysis and investment modeling through machine learning theory are also actively studied. The limits of linearity problem existing in financial time series studies are overcome by using machine learning theory such as artificial intelligence prediction model. The study of quantitative financial data based on the past stock market-related numerical data is widely performed using artificial intelligence to forecast future movements of stock price or indices. Various other studies have been conducted to predict the future direction of the market or the stock price of companies by learning based on a large amount of text data such as various news and comments related to the stock market. Investing on commodity asset, one of alternative assets, is usually used for enhancing the stability and safety of traditional stock and bond asset portfolio. There are relatively few researches on the investment model about commodity asset than mainstream assets like equity and bond. Recently machine learning techniques are widely applied on financial world, especially on stock and bond investment model and it makes better trading model on this field and makes the change on the whole financial area. In this study we made investment model using Support Vector Machine among the machine learning models. There are some researches on commodity asset focusing on the price prediction of the specific commodity but it is hard to find the researches about investment model of commodity as asset allocation using machine learning model. We propose a method of forecasting four major commodity indices, portfolio made of commodity futures, and individual commodity futures, using SVM model. The four major commodity indices are Goldman Sachs Commodity Index(GSCI), Dow Jones UBS Commodity Index(DJUI), Thomson Reuters/Core Commodity CRB Index(TRCI), and Rogers International Commodity Index(RI). We selected each two individual futures among three sectors as energy, agriculture, and metals that are actively traded on CME market and have enough liquidity. They are Crude Oil, Natural Gas, Corn, Wheat, Gold and Silver Futures. We made the equally weighted portfolio with six commodity futures for comparing with other commodity indices. We set the 19 macroeconomic indicators including stock market indices, exports & imports trade data, labor market data, and composite leading indicators as the input data of the model because commodity asset is very closely related with the macroeconomic activities. They are 14 US economic indicators, two Chinese economic indicators and two Korean economic indicators. Data period is from January 1990 to May 2017. We set the former 195 monthly data as training data and the latter 125 monthly data as test data. In this study, we verified that the performance of the equally weighted commodity futures portfolio rebalanced by the SVM model is better than that of other commodity indices. The prediction accuracy of the model for the commodity indices does not exceed 50% regardless of the SVM kernel function. On the other hand, the prediction accuracy of equally weighted commodity futures portfolio is 53%. The prediction accuracy of the individual commodity futures model is better than that of commodity indices model especially in agriculture and metal sectors. The individual commodity futures portfolio excluding the energy sector has outperformed the three sectors covered by individual commodity futures portfolio. In order to verify the validity of the model, it is judged that the analysis results should be similar despite variations in data period. So we also examined the odd numbered year data as training data and the even numbered year data as test data and we confirmed that the analysis results are similar. As a result, when we allocate commodity assets to traditional portfolio composed of stock, bond, and cash, we can get more effective investment performance not by investing commodity indices but by investing commodity futures. Especially we can get better performance by rebalanced commodity futures portfolio designed by SVM model.
Brand has received much attention from considerable marketing research. When consumers consume product or services, they are exposed to a lot of brand related stimuli. These contain brand personality, brand experience, brand identity, brand communications and so on. A special kind of new crisis occasionally confronting companies' brand management today is the brand related rumor. An important influence on consumers' purchase decision making is the word-of-mouth spread by other consumers and most decisions are influenced by other's recommendations. In light of this influence, firms have reasonable reason to study and understand consumer-to-consumer communication such as brand rumor. The importance of brand rumor to marketers is increasing as the number of internet user and SNS(social network service) site grows. Due to the development of internet technology, people can spread rumors without the limitation of time, space and place. However relatively few studies have been published in marketing journals and little is known about brand rumors in the marketplace. The study of rumor has a long history in all major social science. But very few studies have dealt with the antecedents and consequences of any kind of brand rumor. Rumor has been generally described as a story or statement in general circulation without proper confirmation or certainty as to fact. And it also can be defined as an unconfirmed proposition, passed along from people to people. Rosnow(1991) claimed that rumors were transmitted because people needed to explain ambiguous and uncertain events and talking about them reduced associated anxiety. Especially negative rumors are believed to have the potential to devastate a company's reputation and relations with customers. From the perspective of marketer, negative rumors are considered harmful and extremely difficult to control in general. It is becoming a threat to a company's sustainability and sometimes leads to negative brand image and loss of customers. Thus there is a growing concern that these negative rumors can damage brands' reputations and lead them to financial disaster too. In this study we aimed to distinguish antecedents of brand rumor transmission and investigate the effects of brand rumor characteristics on rumor spread intention. We also found key components in personal acceptance of brand rumor. In contextualist perspective, we tried to unify the traditional psychological and sociological views. In this unified research approach we defined brand rumor's characteristics based on five major variables that had been found to influence the process of rumor spread intention. The five factors of usefulness, source credibility, message credibility, worry, and vividness, encompass multi level elements of brand rumor. We also selected product involvement as a control variable. To perform the empirical research, imaginary Korean 'Kimch' brand and related contamination rumor was created and proposed. Questionnaires were collected from 178 Korean samples. Data were collected from college students who have been experienced the focal product. College students were regarded as good subjects because they have a tendency to express their opinions in detail. PLS(partial least square) method was adopted to analyze the relations between variables in the equation model. The most widely adopted causal modeling method is LISREL. However it is poorly suited to deal with relatively small data samples and can yield not proper solutions in some cases. PLS has been developed to avoid some of these limitations and provide more reliable results. To test the reliability using SPSS 16 s/w, Cronbach alpha was examined and all the values were appropriate showing alpha values between .802 and .953. Subsequently, confirmatory factor analysis was conducted successfully. And structural equation modeling has been used to analyze the research model using smartPLS(ver. 2.0) s/w. Overall, R2 of adoption of rumor is .476 and R2 of intention of rumor transmission is .218. The overall model showed a satisfactory fit. The empirical results can be summarized as follows. According to the results, the variables of brand rumor characteristic such as source credibility, message credibility, worry, and vividness affect argument strength of rumor. And argument strength of rumor also affects rumor intention. On the other hand, the relationship between perceived usefulness and argument strength of rumor is not significant. The moderating effect of product involvement on the relations between argument strength of rumor and rumor W.O.M intention is not supported neither. Consequently this study suggests some managerial and academic implications. We consider some implications for corporate crisis management planning, PR and brand management. This results show marketers that rumor is a critical factor for managing strong brand assets. Also for researchers, brand rumor should become an important thesis of their interests to understand the relationship between consumer and brand. Recently many brand managers and marketers have focused on the short-term view. They just focused on strengthen the positive brand image. According to this study we suggested that effective brand management requires managing negative brand rumors with a long-term view of marketing decisions.