The process and change of convergence in the economy and industry with the development of digital technology and combining with new technologies is called Digital Transformation. Specifically, it refers to innovating existing businesses and services by utilizing information and communication technologies such as big data analysis, Internet of Things, cloud computing, and artificial intelligence. Digital transformation is changing the shape of business and has a wide impact on businesses and consumers in all industries. Among them, the big data and analytics market is emerging as one of the most important growth drivers of digital transformation. Integrating intelligent data into an existing business is one of the key tasks of digital transformation, and it is important to collect and monitor data and learn from the collected data in order to efficiently operate a data-based business. In developed countries overseas, research on new business models using various data accumulated at the level of government and private companies is being actively conducted. However, although the trade and import/export data collected in the domestic public sector is being accumulated in various types and ranges, the establishment of an analysis and utilization model is still in its infancy. Currently, we are living in an era of massive amounts of big data. We intend to discuss the value of trade big data possessed from the past to the present, and suggest a strategy to activate trade big data for trade digital transformation and a new direction for future trade big data research.
This study aims to analyze international trade papers published in Korea during the past 2002-2022 years. Through this study, it is possible to understand the main subject and direction of research in Korea's international trade field. As the research mythologies, this study uses the big data analysis such as the text mining and Social Network Analysis such as frequency analysis, several centrality analysis, and topic analysis. After analyzing the empirical results, the frequency of key word is very high in trade, export, tariff, market, industry, and the performance of firm. However, there has been a tendency to include logistics, e-business, value and chain, and innovation over the time. The degree and closeness centrality analyses also show that the higher frequency key words also have been higher in the degree and closeness centrality. In contrast, the order of eigenvector centrality seems to be different from those of the degree and closeness centrality. The ego network shows the density of business, sale, exchange, and integration appears to be high in order unlike the frequency analysis. The topic analysis shows that the export, trade, tariff, logstics, innovation, industry, value, and chain seem to have high the probabilities of included in several topics.
The technological development in the era of the 4th industrial revolution is changing the paradigm of various industries. Various technologies such as big data, cloud, artificial intelligence, virtual reality, and the Internet of Things are used, creating synergy effects with existing industries, creating radical development and value creation. Among them, the logistics sector has been greatly influenced by quantitative data from the past and has been continuously accumulating and managing data, so it is highly likely to be linked with big data analysis and has a high utilization effect. The modern advanced technology has developed together with the data mining technology to discover hidden patterns and new correlations in such big data, and through this, meaningful results are being derived. Therefore, data mining occupies an important part in big data analysis, and this study tried to analyze data mining techniques that can contribute to the logistics field and common logistics using these data mining technologies. Therefore, by using the AHP technique, it was attempted to derive priorities for each type of efficient data mining for logisticalization, and R program and R Studio were used as tools to analyze this. Criteria of AHP method set association analysis, cluster analysis, decision tree method, artificial neural network method, web mining, and opinion mining. For the alternatives, common transport and delivery, common logistics center, common logistics information system, and common logistics partnership were set as factors.
The Journal of Asian Finance, Economics and Business
/
제7권7호
/
pp.475-487
/
2020
The paper aims to facilitate a discussion around how big data technologies and data from citizens can be used to help public administration, society, and policy-making to improve community's lives. This paper discusses opportunities and challenges of big data strategies for government, society, and policy-making. It employs the presentation of numerous practical examples from different parts of the world, where public-service delivery has seen transformation and where initiatives have been taken forward that have revolutionized the way governments at different levels engage with the citizens, and how governments and civil society have adopted evidence-driven policy-making through innovative and efficient use of big data analytics. The examples include the governments of the United States, China, the United Kingdom, and India, and different levels of government agencies in the public services of fraud detection, financial market analysis, healthcare and public health, government oversight, education, crime fighting, environmental protection, energy exploration, agriculture, weather forecasting, and ecosystem management. The examples also include smart cities in Korea, China, Japan, India, Canada, Singapore, the United Kingdom, and the European Union. This paper makes some recommendations about how big data strategies transform the government and public services to become more citizen-centric, responsive, accountable and transparent.
This study analyzes the trade issues and curriculum issues of universities in the 4th Industrial Revolution era with the aim of finding strategies to improve the curriculum of international commerce and to cultivate trade manpower by matching them with the trade job competencies required by trade enterprises. To this end, trade college students, GTEP partners, industry-academia partners, and expert groups of N university were asked to provide information on trade curriculum for the current curriculum. The resulting data were analyzed by questionnaire frequency analysis and FGI method to reveal that both students and graduates are interested in improving the trade curriculum of the university, and that companies are also demanding talents who are responsible for the comprehensive process of trade practice and can perform sincerely and comprehensively. Therefore, we have established a new curriculum that is suitable for the 4th industrial age, opened a certificate acquisition course suitable for the needs of the company, and developed the commercial practice, trade simulation, capstone design, and PBL teaching method. Ways are suggesting to reduce mismatch between universities and companies.
통계에 의하면 국내 중소기업들은 자금조달의 대부분을 은행 대출에 의존하고 있는 것으로 나타나고 있다. 그러나 담보가 없고 금융거래 이력도 부족한 소상공인들은 은행으로부터 대출을 받는데 어려움을 겪고 있다. 재무제표 등 은행에서 신용평가를 위하여 필요로 하는 정보를 제공하지 못하는 금융정보부족 (Thin File) 때문이다. 이러한 문제를 타개하기 위해서 최근 P2P 등 대안금융에서는 기존의 금융정보 대신 핀테크를 활용한 인구통계, 거래정보 등 차별화된 정보들을 이용하여 소규모 자금을 소상공인들에게 제공하는 새로운 신용평가기법들이 확산되고 있다. 이러한 환경 변화 패러다임 속에서 본 연구는 매출액 변동, 입지조건 등 상권정보에 기초한 빅데이터를 활용하여 소상공인들에게 자금공급을 확대할 수 있는 신용평가방안을 모색하고자 한다. 상권에서 발생하는 빅데이터를 실증적으로 분석함으로써 신용평가요소로서의 효과성을 검증하여 소상공인의 사업성 평가에 필요한 주요변수들을 도출하고자 하는 것이다. 본 연구에서는 2009년에서 2018년 2월까지 서비스업을 영위하는 서울시 소재 사업체 17,116건을 대상으로 사업체의 위치별로 발생하는 상권정보를 빅데이터 전문기업 NICE지니데이터(주)로부터 수집하여 표본을 구성하였다. 소상공인들에게서도 어렵지 않게 구할 수 있는 사업장의 입지 및 상권과 관련된 빅데이터를 수집 분석하여 이들 데이터가 기업의 부실화에 영향을 미치는가를 분석하였다. 기존에 활용되지 못한 빅데이터 변수들을 탐색하여 소상공인에 대한 효율적인 금융지원에 활용 가능성을 확인함으로써 대부분 정책자금이나 담보에 의존하여 이루어지는 소상공인대출이 일반 상업은행에서도 중소기업대출의 한 부문으로 비중 있게 이루어질 수 있도록 하기 위함이다. 본 연구는 근본적으로 정보비대칭 (Information Asymmetry)의 문제가 내재되어 있는 소상공인들의 자금조달에 관하여 전통적인 재무정보가 아닌 상권분석 변수들을 도출하고, 이 변수들이 신용평가에 효과성이 있는지 여부를 상권 빅데이터의 분석을 통하여 검증하였다는 점에서 연구의 차별성이 있다.
정보기술과 기기의 발달은 정보화 사회를 가속화 시켰으며 이에 따라 정보의 생산과 확산, 그리고 소비가 훨씬 빠르고 편리해졌다. 사람들이 이제 언제 어디서든 무선통신과 스마트기기를 활용하여 정보를 창조, 공유, 소비할 수 있게 되었다. 또한, 기술의 발달은 기존의 텍스트가 주를 이루던 사용자의 데이터 소비패턴을 이미지, 음성, 영상의 대용량 데이터를 확산과 공유를 가능하게 되었으며 이를 통하여 개인이 소비하는 데이터의 양도 기하급수적으로 늘어나게 되었다. 과거와는 다르게 빠르게 생성되고 소비되는 방대한 데이터 정보 속에서 유용한 데이터를 찾아서 찾고 원하는 방향으로 알맞게 분석하는지가 더욱 중요한 부분이 되었다. 본 연구에서는 빅데이터에 대하여 살펴보고 전자무역 분야에서의 활용 방법을 보여준다.
Today, the world is considered to indispensable basic data in specific gravity of international trade is increasing in economic activity of every country with globalization, and trade connection index number analyzes an economy or part of trade that contribute to economic growth of a country along with other foreign trade statistics and evaluates along with this. Also, it is becoming one of big subject for economic policy person in charge and related economists I do how measure movement of amount, price and amount of materials in trade. But, about till now interest lack about trade index and trade index creation theoretical, it is actuality that export, import connection index number or similar research is not attained much into domestic and overseas from study tribe which is gone ahead. Moreover, study that try to judge and forecast stream of market applying trade connection index number is hard to find on study until now. And, in this research, there is the objective to figure out stream of Korean market change through trade business index creation that base on Korea Customs Administration export and the importation data and this is differences with several study, and at the same time, it is value of this study.
As the capacity of the 3d scanner developed, the reverse engineering using the 3d scanner is emphasized in the construction industry to obtain the 3d geometric representation of buildings. However, big size of the indoor point cloud data acquired by the 3d scanner restricts the efficient process in the reverse engineering. In order to solve this inefficiency, several pre-processing methods simplifying and denoising the raw point cloud data by the rough standard are developed, but these non-standard methods can cause the inaccurate recognition and removal the key-points. This paper analyzes the correlation between the accuracy of wall recognition and the density of the data, thus proposes the proper method for the raw point cloud data. The result of this study could improve the efficiency of the data processing phase in the reverse engineering for indoor point cloud data.
The purpose of this study was to analyze big data to identify the sub-dimensions of ethical consumption, as well as the consumption value associated with ethical consumption that changes over time. For this study, data were collected from Naver and Daum using the keyword 'ethical consumption' and frequency and matrix data were extracted through Textom, for the period January 1, 2016, to December 31, 2018. In addition, a two-way mode network analysis was conducted using the UCINET 6.0 program and visualized using the NetDraw function. The results of text mining show increasing keyword frequency year-on-year, indicating that interest in ethical consumption has grown. The sub-dimensions derived for 2014 and 2015 are fair trade, ethical consumption, eco-friendly products, and cooperatives and for 2016 are fair trade, ethical consumption, eco-friendly products and animal welfare. The results of deriving consumption value keywords were classified as emotional value, social value, functional value and conditional value. The influence of functional value was found to be growing over time. Through network analysis, the relationship between the sub-dimensions of ethical consumption and consumption values derived each year from 2014 to 2018 showed a significantly strong correlation between eco-friendly product consumption and emotional value, social value, functional value and conditional value.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.