• Title/Summary/Keyword: Tractor

Search Result 630, Processing Time 0.025 seconds

Turning Behavior of Tractor-Trailer System by Computer Simulation (컴퓨터 시뮬레이션에 의한 트랙터와 트레일러의 선회운동)

  • Kim, J.H.;Choi, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.4
    • /
    • pp.346-354
    • /
    • 1991
  • Turning behavior of tractor-trailer system was studied to guide the tractor and trailer. Based upon kinematic relationship between the tractor and the trailer, a mathematical model was developed and analyzed by computer simulation. A field test was carried out to verify the mathematical model. Following conclusions were drawn from this study. 1. A mathematical model and a simulation program for turning behavior of tractor-trailer system were developed. 2. The results of the field tests showed that the RMS errors were less than 0.33m and the mathematical model based upon kinematic relationship can be used for mapping guidance system for tractor and trailer. 3. As the steering angle was increased, the turning radius was decreased. When the tractor travelled at the low speed, the travel speed of the tractor did not affect turning radius but did affect running time and stability for steering. 4. When the tractor travelled under the critical velocity, the towed trailer followed smoothly. When the the tractor travelled faster than the critical velocity, the towed trailer oscillated. The critical velocity was determined from the specification of the tractor and the trailer.

  • PDF

Development of an Autonomous Tractor System Using Remote Information Processing (원격 정보처리를 이용한 자율주행 트랙터 시스템의 개발)

  • 조도연;조성인
    • Journal of Biosystems Engineering
    • /
    • v.25 no.4
    • /
    • pp.301-310
    • /
    • 2000
  • An autonomous tractor system was developed and its performance was evaluated. The system consisted of a tractor system of and a remote control station. The tractor and the remote control station communicated each other via wireless modems. The tractor had a DGPS(differential global positioning system), sensors, a controller and a modem. The DGPS collected position data and the tractor status was estimated. The information of tractor status and sensors was transferred to the remote control station. Then, the control station determined the control data such as steering angles using a fuzzy controller. The fuzzy controller used the information from the DGPS, sensors, and GIS(geographic information system) data. The control data were obtained by remote signal processing at the control station The control data for autonomous operation were transferred to the tractor controller. The performances of an autonomous tractor were evaluated for various speeds, different initial positions and different initial headings. About 1.3 seconds of time lag was occurred in transferring the tractor status data and the control data. Compensation the time lag, about 27cm deviation was observed at the speed of 0.5m/s and 37cm at the speed of 1m/s. Error caused mainly by the time lag and it would be reduced by developing a full-duplex radio module for controlling the remote tractor.

  • PDF

Effects of Tread, Wheelbase and Axle Load Distribution on Tractor Vibrations (윤거, 축거, 차축 하중 분포가 트랙터 진동에 미치는 영향)

  • 조춘환;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.21 no.3
    • /
    • pp.293-305
    • /
    • 1996
  • Effects on the tractor vibrations of tread, wheelbase and axle load distribution were analyzed by using mathematical models of tractor and random road surface. A 4 degrees of freedom tractor model was developed to predict the bounce, pitch and roll motions of tractor. The front axle which is constrained to roll with respect to tractor body was also included in the model. A random road profile was generated and used as an excitation input to the tractor. Output vibrations of the model were predicted and analyzed by a computer simulation method. In general, longer tread tends to reduce rolling and longer wheelbase does bouncing and pitching motions. Tractor vibrations were minimum when the ratio of front to rear axle loads was in the range of 30:70-35:65. Sensitivity analysis showed that rolling and pitching motions most sensitively varied with changes in tread and wheelbase while bouncing motion did with the location of mass center.

  • PDF

Tractive Performance Comparison Between Wheel-Drive Tractors and A Rubber Belt Crawler Tractor

  • Nikoli, I.R.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1196-1201
    • /
    • 1993
  • Test of Caterpillar Challenger 65 tractor which has rubber tracks, and articulated four wheel drive tractor with dual wheels and a mechanical front wheel drive tractor were conducted on an unplowed and plouwed wheat stubble field. The following parameters were analyzed : tractive efficiency (ηv), net tractive coefficient ($\phi$n), slip ($\sigma$) , drawbar pull(Fv), drawbar power (Pv) and forward velocity(v). The maximum net tractive coefficient was established at the tractive efficiency of 0.60 on the unplowed wheat stubble field : for the Challenger 65 tractor 0.855 ; 4WD 0.624 and MFWD 0.534 and on the plowed wheat stubble field with the tractive efficiency of 0.40 for the Challenger 65 tractor 0.82 : 4WD 0.57 and for tractor MFWD 0.48.

  • PDF

Noise Reduction in Tractor Cabin (트랙터 운전실의 소음 저감에 관한 연구)

  • Kim, Wonjin;Eun, Myoungwoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.380-384
    • /
    • 2014
  • This study focused on identifying the major noise source in a tractor cabin using experimental methods. The noise levels in a tractor cabin for different engine revolution speeds were analyzed to identify the noise source. The results showed that the power steering unit (PSU) was the major noise source in a tractor cabin. The PSU was moved to the outside from the inside of the cabin in order to reduce the noise in the tractor cabin. As a result, the noise levels on the left and right sides of the operator in the tractor cabin were reduced by 6.8 and 3.9 dB, respectively. Finally, the window method was introduced to evaluate the contribution of the transmission noise. The orders of significance in the tractor noise were the front, bottom, and left area, successively.

Autonomous Tractor for Tillage Operation Using Machine Vision and Fuzzy Logic Control (기계시각과 퍼지 제어를 이용한 경운작업 트랙터의 자율주행)

  • 조성인;최낙진;강인성
    • Journal of Biosystems Engineering
    • /
    • v.25 no.1
    • /
    • pp.55-62
    • /
    • 2000
  • Autonomous farm operation needs to be developed for safety, labor shortage problem, health etc. In this research, an autonomous tractor for tillage was investigated using machine vision and a fuzzy logic controller(FLC). Tractor heading and offset were determined by image processing and a geomagnetic sensor. The FLC took the tractor heading and offset as inputs and generated the steering angle for tractor guidance as output. A color CCD camera was used fro the image processing . The heading and offset were obtained using Hough transform of the G-value color images. 15 fuzzy rules were used for inferencing the tractor steering angle. The tractor was tested in the file and it was proved that the tillage operation could be done autonomously within 20 cm deviation with the machine vision and the FLC.

  • PDF

Development of an Automatic Leveling Mechanism and Response Properties for the Slope Tractor (경사지 트랙터의 자동 수평기구부 개발 및 응답 특성에 관한 연구)

  • Lee S. S.;Mun J. H.;Lee K. S.;Park W. Y.;Lee C. H.;Hwang H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.1-7
    • /
    • 2005
  • When a slope tractor works on the slope land, it travels usually along the contour and slope line. In that case, the efficiency of work generally decreases and the safety of the operator caused by the overturn of the tractor should be considered. Maintaining the tractor body being horizontal during the travel is crucial to solve problems. To overcome such a problem, an automatic leveling control system for slope tractor has been developed. The system composed of sensor for measuring rolling and pitching inclination of the slope tractor chassis, controller, hydraulic control system and mechanism. The limit angle of the leveling control was set up to be ${\pm}15^{\circ}C$ for rolling, ${\pm}7^{\circ}C$ for pitching. The proposed control and hydraulic power system was implemented to the prototype slope tractor. This paper shows results about development of the automatic leveling mechanism and response properties for slope tractor.

Analysis of Agricultural Working Load Experiments for Reduction Gear Ratio Design of an Electric Tractor Powertrain (전기구동 파워트레인의 감속기어비 설계를 위한 농용 트랙터의 작업 부하 분석)

  • Kim, Jung-Yun;Park, Yeong-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.138-144
    • /
    • 2012
  • Recent environmental issues such as exhaust gas and greenhouse effect make the agricultural machinery market takes into account the hybrid and electric propulsion technology used in automotive engineering. Generally the agricultural machinery, particularly an agricultural tractor, needs large load capacity and long continuous operating time comparing with conventional vehicles. In case of a pure electric tractor, it is necessary for considering large capacity batteries and long charging time. Therefore we take an AER extended PHEV (All Electric Range extended Plug-in Hybrid Electric Vehicle) power transmission system in developing an electric tractor in this study. First we propose a PHEV powertrain structure in order to substitute the conventional diesel engine equipped tractor. And we performed the road tests using a conventional mechanical tractor with various load conditions, which were classified and statistically treated real agricultural works. The test results were analysed with respect to the power characteristics of the power source. Finally using the test result, we designed two-stepped reduction gear ratios in the proposed an electric tractor powertrain for carrying out typical agricultural works.

Design of the Hydro-Mechanical Transmission for a 55kW-Class Agricultural Tractor (55kW급 농업용 트랙터 정유압 기계식 변속기 설계)

  • Baek, Seung Min;Kim, Wan Soo;Kim, Yeon Soo;Baek, Seung Yun;Kim, Yong Joo
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.19-27
    • /
    • 2020
  • The purpose of this study was to suggest design criteria for the HMT (hydro-mechanical transmission) of a 55 kW-class agricultural tractor, develop a simulation model, and evaluate its performance such as axle rotational speed, tractor speed, and power transmission efficiency. In this study, the HMT comprised a compound planetary gear and a HSU (hydro-static unit), and the compound planetary gear comprised two planetary gear sets. The HMT has three gear stages, and the maximum tractor speed was selected as 40 km/h. The simulation time was set at 2736 hours considering the lifetime of the tractor, and the simulation was performed for each gear stage at the engine-rated power conditions. As a result of the simulation, the axle rotational speeds for each gear stage were 39, 77, and 158 rpm, respectively. The range of tractor speed for each gear stage were 1.05-10.22 km/h, 10.74-20.17 km/h, and 20.70-41.40 km/h, respectively. The APE (absolute percentage gear) for the tractor's maximum speed between target value and simulation results were 2.20%, 0.85%, and 3.50%, respectively. Also, the power transmission efficiency for each gear stage were 0-75%, 72-81%, and 69-81%, respectively. The simulation results for the power transmission efficiency of the HMT were similar with the results of the previous research. This was a basic study on the development of the HMT for an agricultural tractor. In future studies, it is necessary to develop a tractor platform and evaluate the performance. The comparison between the simulation model and the HMT tractor should be performed.

A study of driving simulation considering the various working modes of electric tractor (전기트랙터의 다양한 작업 환경을 고려한 주행 시뮬레이션에 대한 연구)

  • Yoo, Ilhoon;Kim, Byeongwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5357-5365
    • /
    • 2013
  • In this paper, we propose that a model based design for a electric tractor system by using ASM(Automotive Simulation Models). Before developing a realistic electric tractor, it is essential that defining the capacities of power sources and optimizing the parameters of electric tractor. In additionally, because the electric tractor must have not only driving function but also working function, two PMSM are used at electric tractor. ASM which is based on simulink and Carsim were used to design a electric system and powertrain of electric tractor. For verifying the electric tractor system, we compared the design parameters such as max power, state of charge, drive distance, velocity which were carried out by the simulation and experimental method. The predicted results by the development model were in good agreement with the simulation results. According to simulation of tractor, it is possible to arrange the advanced research of dynamical characteristic of tractor and present the guidelines for the electrical driving system.