• Title/Summary/Keyword: Traction-separation

Search Result 23, Processing Time 0.023 seconds

Crack growth prediction and cohesive zone modeling of single crystal aluminum-a molecular dynamics study

  • Sutrakar, Vijay Kumar;Subramanya, N.;Mahapatra, D. Roy
    • Advances in nano research
    • /
    • v.3 no.3
    • /
    • pp.143-168
    • /
    • 2015
  • Initiation of crack and its growth simulation requires accurate model of traction - separation law. Accurate modeling of traction-separation law remains always a great challenge. Atomistic simulations based prediction has great potential in arriving at accurate traction-separation law. The present paper is aimed at establishing a method to address the above problem. A method for traction-separation law prediction via utilizing atomistic simulations data has been proposed. In this direction, firstly, a simpler approach of common neighbor analysis (CNA) for the prediction of crack growth has been proposed and results have been compared with previously used approach of threshold potential energy. Next, a scheme for prediction of crack speed has been demonstrated based on the stable crack growth criteria. Also, an algorithm has been proposed that utilizes a variable relaxation time period for the computation of crack growth, accurate stress behavior, and traction-separation atomistic law. An understanding has been established for the generation of smoother traction-separation law (including the effect of free surface) from a huge amount of raw atomistic data. A new curve fit has also been proposed for predicting traction-separation data generated from the molecular dynamics simulations. The proposed traction-separation law has also been compared with the polynomial and exponential model used earlier for the prediction of traction-separation law for the bulk materials.

Linking bilinear traction law parameters to cohesive zone length for laminated composites and bonded joints

  • Li, Gang;Li, Chun
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.2
    • /
    • pp.177-196
    • /
    • 2014
  • A theoretical exploration for determining the characteristic length of the cohesive zone for a double cantilever beam (DCB) specimen under mode I loading was conducted. Two traction-separation laws were studied: (i) a law with only a linear elastic stage from zero to full traction strength; and (ii) a bilinear traction law illustrating a progressive softening stage. Two analytical solutions were derived for the first law, which fit well into two existing solution groups. A transcendental equation was derived for the bilinear traction law, and a graphical method was presented to identify the resultant cohesive zone length. The study using the bilinear traction law enabled the theoretical investigation of the individual effects of cohesive law parameters (i.e., strength, stiffness, and fracture energy) on the cohesive zone length. Correlations between the theoretical and finite element (FE) results were assessed. Effects of traction law parameters on the cohesive zone length were discussed.

Cervical Traction (경추견인법)

  • Park Ji-Whan;Park Youn-ki
    • The Journal of Korean Physical Therapy
    • /
    • v.3 no.1
    • /
    • pp.203-209
    • /
    • 1991
  • Cervical traction effects its benefits by immobilizing the neck when it is used in a continuous manner from a reclining position. when used intermittently traction functions by elongating the neck and straightening the cervical Lordosis. This position of slight flexion opens the posterior articulations, widens the intervetebral foramina, disengages the facet surfaces, and elongates the posterior muscular tissues and Ligaments. The duration of traction is arbitary but the amount of traction is that which is tolerated by the patient and benefits the patient's problem. Application of traction in slingh flexion accomplishes the same separation with Less force and thus with Less discomfort experienced by the patient. But the effect of traction on the disks is debated.

  • PDF

Analysis of Fire Accident on Power Line for DC Electric Traction Vehicles (전기철도 전원계통에서의 화재사고 사례 분석)

  • Song, Jae-Yong;Cho, Young-Jin;Nam, Jung-Woo;Kim, Jin-Pyo;Park, Nam-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.18-23
    • /
    • 2010
  • This paper describes a cause of fire accidents on power system fire DC electric traction vehicles. We investigated fire scene of power line for DC electric traction vehicles. From analysis results, the cause of fire on power line turned out line to ground fault between a feeder of electric power services(pantagraph) and DC electric traction vehicle roof. Fire accident of DC electric traction vehicles be assumed that electric sparks had been produced between the pantagraph and the power line conductor by repetitively making contact and separation, maybe if some material like branches get in between connecting rod it makes progress line to ground fault. ZnO arresters are widely used to protect DC electric traction vehicles against overvoltages caused by lightning or switching surges. However, the arresters are deteriorated by commercial overvoltages and/or lightning one. The deteriorated arresters could lead power failures, such as line to ground fault by a thermal runaway resulting from the increases in leakage current even in a nominal power system voltage. Finally, the power failures would be causative of the fire accident.

Analysis of Fire Accidents on Power Line for DC Electric Traction Vehicles (전기철도 전원계통에서의 화재 사고사례 분석)

  • Song, Jae-Yong;Cho, Young-Jin;Kim, Jin-Pyo;Park, Nam-Kyu;Kil, Gyung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.241-247
    • /
    • 2008
  • This paper describes a cause of fire accidents on power system for DC electric traction vehicles. We investigated fire scene of power line for DC electric traction vehicles. From analysis results, the cause of fire on power line turned out line to ground fault between a feeder of electric power services(pantagraph) and DC electric traction vehicle roof. Fire accidents of DC electric traction vehicles be assumed that electric sparks had been produced between the pantagraph and the power line conductor by repetitively making contact and separation, maybe if some material like branches get in between connecting rod it make progress line to ground fault. ZnO arresters are widely used to protect DC electric traction vehicles against overvoltages caused by lightning or switching surges. However, the arresters are deteriorated by commercial frequency overvoltages and/or lightning one. Deteriorated arresters could lead power failures, such as line to ground fault by a thermal runaway resulting from the increases in leakage current even in a nominal power system voltage. The power failures, such as line to ground fault would be causative of the fire accidents.

  • PDF

Dynamic Fracture Analysis at Strip with Composite Materials (복합재로 된 판재에서의 동적 파괴 해석)

  • Cho Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.265-270
    • /
    • 2006
  • When the dynamic crack propagates along the boundary at the strip with composite materials and tears apart it, the equivalent stress and strain, and the traction stress are investigated near its boundary. There are the maximum equivalent stress and plastic strain at the very seperated part and the maximum displacement at the bent part of the end of strip. The traction stress becomes higher as the separation distance becomes more. Its maximum value becomes 75 MPa as this distance becomes 0.015 mm. As this distance becomes more than 0.015 mm, this stress becomes lower. As this distance becomes more than 0.13 mm, the value of this stress becomes 0 constantly. This study aims at doing the basic study to provide the data necessary for the precise analysis of fracture intensity, the safety design and the development of advanced materials.

  • PDF

A Cohesive Surface Separation Potential

  • Lee, Youngseog;Kim, Kwang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1435-1439
    • /
    • 2002
  • This paper presents a form of the cohesive surface separation potential, which can produce potential curves by varying a single dimensionless parameter. Results show that a partial modification of Xu and Needleman's (1994) cohesive surface separation potential makes it possible to present the other potential corves as a special case as long as the normal separation is concerned. The proposed potential may describe interfacial debonding-crack initiation and growth-character of materials and, through numerical simulation, provide an insight for the effect of different cohesive surface separation potentials on the interfacial debonding.

A Hybrid CBPWM Scheme for Single-Phase Three-Level Converters

  • Wang, Shunliang;Song, Wensheng;Feng, Xiaoyun;Ding, Rongjun
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.480-489
    • /
    • 2016
  • A novel hybrid carrier-based pulse width modulation (CBPWM) scheme that combines unipolar and dipolar modulations is proposed for single-phase three-level rectifiers, which are widely applied in railway traction drive systems. The proposed CBPWM method can satisfy the volt-second balancing principle in the complete modulation index region through overmodulation compensation. The modulation scheme features two modulation modes: unipolar and dipolar. The operation range limits of these modulation modes can be modified by changing the separation coefficient. In comparison with the traditional unipolar CBPWM, the proposed hybrid CBPWM scheme can provide advantageous features, such as lower high-order harmonic distortion of the line current and better utilization of switching frequency. The separation coefficient value is optimized to achieve the maximum utilization of these advantages. The experimental results verify the feasibility and effectiveness of the proposed hybrid CBPWM scheme.

Application of cohesive zone model to large scale circumferential through-wall and 360° surface cracked pipes under static and dynamic loadings

  • Moon, Ji-Hee;Jang, Youn-Young;Huh, Nam-Su;Shim, Do-Jun;Park, Kyoungsoo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.974-987
    • /
    • 2021
  • This paper presents ductile fracture simulation of full-scale cracked pipe for nuclear piping materials using the cohesive zone model (CZM). The main objective of this study is to investigate the applicability of CZM to predict ductile fracture of cracked pipes with various crack shapes and under quasi-static/dynamic loadings. The transferability of the traction-separation (T-S) curve from a small-scale specimen to a full-scale pipe is demonstrated by simulating small- and full-scale tests. T-S curves are calibrated by comparing experimental data of compact tension specimens with finite element analysis results. The calibrated T-S curves are utilized to predict the fracture behavior of cracked pipes. Three types of full-scale pipe tests are considered: pipe with circumferential through-wall crack under quasistatic/dynamic loadings, and with 360° internal surface crack under quasi-static loading. Computational results using the calibrated T-S curves show a good agreement with experimental data, demonstrating the transferability of the T-S curves from small-scale specimen.

Analysis of fatigue crack growth using fictitious crack model (가상균열 모델을 이용한 피로균열 진전 해석)

  • Yang Seung-Yong;Goo Byeong-choon
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.79-84
    • /
    • 2003
  • A fictitious crack model was used to analyze fatigue crack growth under the influence of residual stress. In the fictitious crack model, crack is represented in terms of the separation of two adjacent interfaces and the constitutive equation between the separation and traction is assumed. The effect of fatigue loading was included in the constitutive equation by considering damage accumulation in the cohesive zone. To investigate the effect of the residual stress on the fatigue crack growth, we calculated the residual stress distribution due to transient heat flux to the specimen by finite element method. Fatigue crack growth was simulated by the fictitious crack model with repeated loading. The mode-I crack growth rates were compared for the cases with and without the compressive residual stress around the crack tip. It was observed that the mode-I crack growth can be suppressed by compressive residual stress.

  • PDF