• Title/Summary/Keyword: Traction motors

Search Result 133, Processing Time 0.024 seconds

Insulation Evaluation of Low-voltage Induction Motors by Surge Voltages (서지전압에 의한 저압유도전동기의 절연평가)

  • Choi, Su-Yeon;Choi, Jae-Sung;Park, Dae-Won;Kil, Gyung-Suk;Song, Jae-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1892-1896
    • /
    • 2008
  • Inverter-fed induction motors (IFM) are prevalent in traction vehicles. However, the winding insulation of IFM is substantially more stressed than of line-powered motors by surge voltages. Consequently, the winding insulation of IFM should be estimated by surge voltages. Also, the weakness of coil insulation can be detected by the surge voltage test. This paper described the insulation evaluation of induction motors by application of surge voltages. A surge voltage generator with the maximum voltage of 5 kV and the selectable rise-time in ranges of $50\;ns\;{\sim}\;500\;ns$ was fabricated. In the experiment, we applied surge voltages into induction motors with the magnitude and the risetime according to IEEE 522. By the analysis of applied surge voltage and current waveforms, we could find difference between normal and defection windings.

  • PDF

Application of SR Drive for Locomotive Traction

  • Ahn Jin-Woo;Lee Dong-Hee;Hao Chen;Lee Sang-Hun;Lim Heon-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.29-32
    • /
    • 2002
  • The developed locomotive in coal mine drawn by the parallel drive system of the double Switched Reluctance motors is introduced. The operational principles, the control pattern and the component parts of the traction and the regenerative braking operation are proposed. The drive system contributes to reduce the cost of utilization of the locomotive per ton kilometer.

  • PDF

Harmonic Analysis for Traction Power Supply System Using Four-Port Network Model (6단자망 회로모델을 이용한 전기철도 급전시스템의 고조파 해석)

  • Chang, Sang-Hun;O, Gwang-Hye;Kim, Ju-Rak;Kim, Jeong-Hun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.6
    • /
    • pp.255-261
    • /
    • 2002
  • Recently, traction motors in trains are supplied with single phase a.c. power. After this power is converted to d.c. power, it is inverted to three phase power to operate traction motors. As going through the process of the conversion, harmonic current is generated in train. The method of conventional analysis on harmonics, studied by RTRI, is modeled with equivalent circuit of ac AT-fed electric railroad system using by the distributed constant circuit. However, this circuit as two-port network model has some difference in comparison with real system. The reason why the conventional method is different from the real system is that the conventional method dose not include three conductor groups, that is catenary, rail, and feeder, and admittance between the conductors for line capacitance. Therefore, this method has a little error. This paper proposes new method to more effectively estimate Harmonic current. In this method, numerous components in electric railway are categorized and each component is defined as a four- port network model. The equivalent circuit for the entire power supply system is also described into a four-port network model with connections of these components. In order to evaluate the efficiency and the accuracy of a proposed method, it is compared with values measured in Kyung-Bu high speed line and ones calculated by the conventional method.

The Measurement System Development for Motor Temperature of TTX (틸팅차량 전동기 온도측정 시스템 개발)

  • Lee, Su-Gil;Han, Young-Jae;Han, Seong-Ho;Lee, Jun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.202-203
    • /
    • 2007
  • Induction Motor is important at tilting train. Tiling train induction motor should be operated to commercial servicespeed 180km/h at Korea Conventional Line upgrade railroad. As the induction motors are without commutators, maintenance is easy and it is far lighter than the conventional motors with the same capacity. The induction motor, however, posed problems in use as its motor torque is not large enough compared with DC motors. With the recent advances in power semiconductors, it is possible to apply the induction motors to trains by applying VVVF inverter control method to the traction motor. In this study, we realize the stable measurement AC motor temperature characteristic of TTX train.

  • PDF

Development of Battery Management System for Electric Vehicle (전기자동차용 전지관리 시스템의 개발)

  • Kim, C.G.;Sung, K.T.;Kim, S.H.;Koo, J.S.;Park, S.S.;Youn, K.Y.;Kim, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1223-1225
    • /
    • 2002
  • This paper has described in Electric Vehicle Battery Management System(EV BMS). EV BMS manages the input/output energy of the traction battery, and provides the optimum environment condition during charging/ driving through the communication with other controllers. In this paper, we introduce our BMS for Santa Fe EV. Hyundai Motor Company has been developed EV since 1990. Recently, Santa Fe EV has been demonstrating with the environmental friendly technology. Two year real road testing program with electric powered Santa Fe is being undertaken by HMC in Hawaii.

  • PDF

Determination of taxiing resistances for transport category airplane tractive propulsion

  • Daidzic, Nihad E.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.651-677
    • /
    • 2017
  • For the past ten years' efforts have been made to introduce environmentally-friendly "green" electric-taxi and maneuvering airplane systems. The stated purpose of e-taxi systems is to reduce the taxiing fuel expenses, expedite pushback procedures, reduce gate congestion, reduce ground crew involvement, and reduce noise and air pollution levels at large airports. Airplane-based autonomous traction electric motors receive power from airplane's APU(s) possibly supplemented by onboard batteries. Using additional battery energy storages ads significant inert weight. Systems utilizing nose-gear traction alone are often traction-limited posing serious dispatch problems that could disrupt airport operations. Existing APU capacities are insufficient to deliver power for tractive taxiing while also providing for power off-takes. In order to perform comparative and objective analysis of taxi tractive requirements a "standard" taxiing cycle has been proposed. An analysis of reasonably expected tractive resistances has to account for steepest taxiway and runway slopes, taxiing into strong headwind, minimum required coasting speeds, and minimum acceptable acceleration requirements due to runway incursions issues. A mathematical model of tractive resistances was developed and was tested using six different production airplanes all at the maximum taxi/ramp weights. The model estimates the tractive force, energy, average and peak power requirements. It has been estimated that required maximum net tractive force should be 10% to 15% of the taxi weight for safe and expeditious airport movements. Hence, airplanes can be dispatched to move independently if the operational tractive taxi coefficient is 0.1 or higher.

Design and Control of Braking Chopper Circuit for Ventilation Inverter of Traction Control System (고속전철용 추진제어장치의 냉각용 인버터를 위한 제동초퍼 회로 설계 및 제어)

  • Cho, Sung-Joon
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.314-315
    • /
    • 2011
  • This paper introduces the design and control method of braking chopper circuit which can supply input power to ventilation inverter of traction control system. The DC input voltage from auxiliary block (static inverter) is normally used as an input of ventilation inverter. It converts DC input to AC output voltage to drive cooling fans for traction control system and traction motors. The electrical braking force is very important for high speed train to guarantee safety even though the train is running in the dead section where the pantograph voltage is not supplied. When the high speed train decelerate speed in dead section, the regenerative energy is dissipated by braking resistor. This paper proposed the braking chopper control method to implement rheostatic braking function and the appropriate chopper circuit for supplying voltage source to ventilation inverter during rheostatic braking mode. The proposed chopper circuit makes it possible for traction control system to regenerate power continuously regardless of the existence of pantograph voltage. The feasibility of proposed braking chopper control and circuit were proven by inertia load test and actual train field test.

  • PDF

Prospects for the use of Multiphase Inverter-fed Asynchronous Drives in the Field of Traction Systems of Railway Vehicles

  • Brazhnikov, Andrey V.;Belozerov, Ilya R.
    • International Journal of Railway
    • /
    • v.5 no.1
    • /
    • pp.38-47
    • /
    • 2012
  • At present among the most important problems in the field of traction systems of railway vehicles are the following: 1) the minimization of the mass-and-overall dimensions of the drive systems; 2) the increase of the drive systems reliability and obtaining their higher fault-tolerance abilities; 3) the minimization of the motion speed pulsations and its oscillations, etc. The results of the researches received by the authors of this paper show that the use of the multiphase (i.e. having the number of phases more than four) inverter-fed induction motors in these traction systems is the most effective way of solving the above mentioned problems. In this case the motion speed oscillations can be decreased only by the increase of the drive phase number without any change in the inverter control algorithm. In addition, the application of some non-traditional control methods in the multiphase asynchronous traction drive system of a railway vehicle allows to decrease the mass-and-overall dimensions of the system and to improve its reliability and some other technical-and economic characteristics.

Partial Discharge Tests for Traction Motor Using 1000 pF Couplers (1000 pF 커플러를 이용한 견인전동기 부분방전특성)

  • Ko, Byeong-Hun;Park, Hyun-June;Kwon, Sam-Young;Na, Hae-Kyung;Lee, Hyung-Woo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.214-218
    • /
    • 2007
  • With the development of high speed railway, traction motors play a critical role in the operation of railway vehicle. This paper describes the use of 1000 pF coupler as a on-line partial discharge (PD) measurement for the assessment of railway traction motor. The PD tests are performed with developed PD analyzer and the 5 model coils such as thermal, electrical, mechanical and environmental aging respectively at various AC voltages. On-line PD tests using 1000 pF couplers show that PD patterns can be detected successfully at 2.3 kV.

  • PDF

The Development of A.C. Induction Motor for Electric Railway Rolling Stock (철도차량용 전동기의 과제)

  • Yun, S.J.;Lee, I.W.;Sung, G.D.;Ha, H.S.;Noh, C.W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.24-26
    • /
    • 1995
  • The Development of A.C. Induction Motor for Railway Rolling Stock. The traction motor is designed as 4-pole induction motor with self ventilation. The winding insulation is throughout of materials of class C. The rotor is designed as a squrrel rotor with copper bar and casting. The rotor speed is detected by means of a pulse generator. The newer tection motor have no casting(frame). Punched-in holes make up the air duct and transfer the heat losses in complete. Maximim motor rpm is higher due to rotor construction. New is the entry of water-cooled traction motors in urban, However the water cooling design in - unfortunately - not applicable in traction motor.

  • PDF