• Title/Summary/Keyword: Traction efficiency

Search Result 168, Processing Time 0.041 seconds

Optimal Power Control of Wind Induction Generator System (풍력발전용 유도발전기 시스템의 최적제어)

  • Choi SunPill;Heo TaeWon;Park JeeHo;Noh TaeGyun;Jung JaeRoun;Woo JungIn
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.69-72
    • /
    • 2002
  • In this study, We proposed high efficiency wind power generator system for induction generator used SVPWM swiching inverter. First, We propose Equivalient Circuit for Induction Generator, it's characteristics equation, and power equation of slip. In addition, we suggest Pick Power Traction Slip control methods, adapted variable wind power system. We study simulation result for the proposed system and output power by slip effect. and we identify SVPWM of suitable wind power system by comparison between SPWM and SVPWM Consequently, we show that the system control result from variable wind power is suitable.

  • PDF

Parameter Identification of an Induction Motor Drive with Magnetic Saturation for Electric Vehicle

  • Jeong, Yu-Seok;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.418-423
    • /
    • 2011
  • This paper presents a simulation model and a parameter identification scheme of an induction motor drive for electric vehicle. The induction motor in automotive applications should operate in very high efficiency and achieve the maximum-torque-per-ampere (MTPA) feature even with saturated magnetic flux under very high torque. The indirect vector control which is typically adopted in traction drive system requires precise information of motor parameters, particularly rotor time constants. This work models an induction motor considering magnetic saturation and proposes an empirical identification method using the current controller in the synchronous reference frame. The proposed method is applied to a 22kW-rated induction motor for electric vehicle.

Two-Speed Gear Shift System for Electric Vehicles (2단 변속시스템을 이용한 전기자동차의 변속제어 알고리즘)

  • 성기택;이준웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.63-71
    • /
    • 2000
  • A shift control algorithm of a newly developed two-speed gear shift system is proposed for electric vehicle applications. The algorithm is formulated according to the motor torque map and optimized to obtain the adequate propulsion characteristics for vehicle. Two speed gear system with shift control algorithm has proved greater efficiencies in terms of energy economy with its simplified hardware and software structures. The gear shifting is designed to be carried out by an actuator and the control signal from a vehicle control unit equipped with $\mu$-processor. The results of performances and efficiency of the algorithm by simulation and vehicle test are described.

  • PDF

A DITC Strategy of SRM for Smooth Drive of Hoist (호이스트 견인용 SRM의 스무딩 운전을 위한 DITC 기법)

  • Wang, Huijun;Lee, Zhen-Guo;An, Young-Ju;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1047-1048
    • /
    • 2006
  • The DITC of SRM for smooth hoist driving is presented in this paper. In the hoist system, the switched reluctance motor (SRM) is applied instead of induction motor because of high efficiency and good traction characteristic. In order to improve start-up and stop performance of hoist system, the smoothing operation sequence of SRM using DITC is proposed. According to the switching sequence and hysteric band, the instantaneous torque is controlled. Since, the proposed method uses only the turn-on angle depending on variation of load and speed, a simple DITC can be implemented. The validity is proved by simulation and experiment.

  • PDF

A Study on Propulsion Characteristic of HEMU-400x (차세대고속열차 추진성능 검토)

  • Han, Young-Jae;Park, Chun-Soo;Kim, Sang-Soo;Kim, Ki-Hwan;Lee, Tae-Hyung;Han, In-Su
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1978-1983
    • /
    • 2008
  • With the increase in population, the area of human activities has expanded, resulting in the dramatic increase in the need for transportation system. Various infrastructures necessary for efficient logistics, however, have not been supplied enough and the logistics efficiency in Korea is in a bad situation now. As a result of the situation, the demand for the railroad transportation system that can provide large volume transportation has increased dramatically. An electric railway system is composed of high-tech subsystems, among which main electric equipment such as motors and converter are critical components determining the performance of electric vehicle. Among the on-board equipments, traction equipment is important part that has influence on safety and performances of vehicles. We is studied for high-speed train of foreign countries. From this research, we knows that axle weight of HEMU-400x is reasonable within 13ton.

  • PDF

A Study on Effect of Applying Energy Storage System on SeoulMetro Line 2 (에너지저장시스템의 서울메트로 2호선 적용 효과에 관한 연구)

  • An, Cheon-Heon;Lee, Han-Min;Kim, Gil-Dong;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.966-971
    • /
    • 2009
  • The recent environmental protection trend requires more strict energy saving, therefore every transportation system should reduce energy consumption to the minimum value. High-efficiency operation system, energy saving and CO2 emissions shall be addressed as important issue in railway system. These issues are the most essential factors of railway, compared to major public transportation system. Recently, saving energy in the electric railway system has been studied. For such new energy saving, the Energy storage system is considered for saving energy. Energy saving is possible by efficient use of regenerated energy. Regenerated energy is recycled amongst vehicles by mean of charge and discharge corresponding to powering and braking of electric vehicle operations. This energy saving contributes to cut CO2 to reduce greenhouse gas emissions. Recycling regenerated energy demonstrate significant effect on peak cut of consumption energy in railway substation. Absorption of excess energy avoids regeneration failure due to high traction voltage. This paper presents effects by applying the energy storage system to SeoulMetro Line 2.

  • PDF

A Study of Design and Analysis of LIM for Light rail vehicle (경전철용 LIM 설계 및 해석 연구)

  • Choi, Byoung-Won;Hur, Ik-Ku;Lee, In-Woo;Park, Chang-Soon;Kwon, Tae-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1414-1416
    • /
    • 2000
  • In the future light rail vehicle is more attractive than subway, because of construction time and cost. For light rail vehicle are two types of traction motors. one is traditional rotating type and the other is linear motor. Linear motor is not better in consideration of efficiency and power factor than rotating type. But the motor needs no translation equipment for linear motion and with them can be constructed low floor vehicle. In this paper will be designed a linear induction motor with consideration of operational condition and analysed operating characteristics using FEM program and equivalent circuit.

  • PDF

Driving Characteristics Improvement of SRM Winch System using Torque Sharing Function (토크분배함수를 이용한 SRM 윈치 시스템의 운전특성 개선)

  • An, Young-Joo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.433-440
    • /
    • 2007
  • In this paper a new dynamoelectric winch system is introduced which is widely applied in shipping. building, architecture and so on. Generally in the winch system the squirrel cage induction motor is used as prime mover and line voltage is directly applied to the induction motor during operation. So it is difficult to obtain the smoothing revolution. because of variation of the weight of cargo and system operating method. Based on above reasons, the switched reluctance motor (SRM) is proposed to replace the induction motor because of more reliable mechanical structure, better traction characteristic and higher efficiency compared to induction motor. And in order to solve smoothing revolution problem, instantaneous torque control method based on torque sharing function (TSF) is used. Finally the validity of the proposed method is verified through the simulation and experimental results.

Effects of Segmented Poles on Exciting Forces for BLDC Motors (세그먼트 극을 가진 BLDC 전동기의 가진력에 관한 연구)

  • Kim, Gyeong-Tae;Hwang, Sang-Mun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.10
    • /
    • pp.530-536
    • /
    • 1999
  • This paper investigates effects of segmented poles on exciting forces such as cogging torque, BEMF, phase current, torque ripple and local forces. Cogging torque, BEMF and local force are determined by FEM analysis and phase current is calculated using voltage equations after determining BEMF and phase inductance. Effective dead zones at pole separations result in wider than the physical dead zones due to leakage field during magnetization. Due to the existence of dead zones, there exist additional exciting harmonics of the cogging torque which play adverse effect on vibration and noise performance. The magnitude of BEMF is decreased and the waveforms are also distorted depending on dead zone positions. Segmented poles inevitably cause uneven magnetic field distribution at pole separations which introduces additional harmonics of exciting forces which are detrimental to structural to structural resonances. They also decrease motor efficiency by reducing effective phase BEMF.

  • PDF

Design and Control of SRM For LSEV Drive

  • Lee, Hee-Chang;Lee, Man-Hyung;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.96-101
    • /
    • 2004
  • This paper presents an application of SRM drive for LSEV(Low Speed Electric Vehicle). In this paper, a 5〔㎾〕 SRM for a traction of a LSEV is to design and investigate the characteristics of the drive system. The main design parameters and control strategy are given. In the control method, a current control, for the soft-starting technique at a starting operation, is adopted. In the high speed range, an angle control technique is implemented, for a high efficiency drive of SRM. Some experimental tests are executed to find the drive performances.