• Title/Summary/Keyword: Traction Control

Search Result 391, Processing Time 0.04 seconds

Acceleration Life Prediction of the Capacitor on a Traction Inverter for a High-Speed Train (고속철도차량용 견인 인버터 커패시터의 가속수명 예측)

  • Maeng, Heeyoung;Jung, Si-Kyo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.653-659
    • /
    • 2015
  • The aim of this study is to develop a technique for the accelerated life test of the capacitor in a propulsion control device of a traction inverter used for a high-speed train. Using this technique, the accelerated life test can possibly estimate the life cycle of a capacitor under various temperature conditions and irregularly applied voltage. The accelerated life test is conducted for the capacitor of the traction inverter. The common proceedings of this test are selection of failure mechanism, determination of accelerated stress, range determination of the accelerated stress, determination of the test condition, and distribution and determination of the sample. From this result, the continuous applied voltage was not considered for the acceleration factors anymore. Therefore, the final result having an acceleration factor of 9.4 (= 13,626/1,445) was observed. Furthermore, the life-shortening acceleration effect for the irregular applied voltage condition can be applied to various situations.

Stability Enhancement of Four-in-Wheel Motor-Driven Electric Vehicles Using an Electric Differential System

  • Hartani, Kada;Merah, Abdelkader;Draou, Azeddine
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1244-1255
    • /
    • 2015
  • This paper presents a new multi-machine robust control based on an electric differential system for electric vehicle (EV) applications which is composed of four in-wheel permanent magnet synchronous motors. It is based on a new master-slave direct torque control (DTC) algorithm, which is used for the control of bi-machine traction systems based on a speed model reference adaptive system observer. The use of an electric differential in the design of a new EV constitutes a technological breakthrough. A classical system with a multi-inverter and a multi-machine comprises a three-phase inverter for each machine to be controlled. Another approach consists of only one three-phase inverter for several permanent magnet synchronous machines. The control of multi-machine single-inverter systems is the subject of this study. Several methods have been proposed for the control of multi-machine single-inverter systems. In this study, a new master-slave based DTC strategy is developed to generate an electric differential system. The entire system is simulated by Matlab/Simulink. The simulation results show the effectiveness of the new multi-machine robust control based on an electric differential system for use in EV applications.

A Study on the Application of the DVR in AC Electric Traction System (전기철도계통에 순간전압강하 보상장치 적용에 관한 연구)

  • 최준호;김태수;김재철;문승일;남해곤;정일엽;박성우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.95-104
    • /
    • 2003
  • The electric traction systems are quite differ from general power systems which is single-phase and heavy load. Therefore, there are inevitably power quality problems such as steady state or transient voltage drop, voltage imbalance and harmonic distortion. Among these problems, since steady-state volatge drop is the one of most important factor in electric power quality, many researches about on the compensation of volatge drop by using SVC(Static Var Compensator) and/or STACOM(Static Compensator) have been studied and proposed Also, it is expected that transient voltage drop(voltage sag) could affect the control and safety of high speed traction load. In this paper, voltage sag compensation of AT(Auto Transformer) feeding system are studied The detailed transient models of utility source, scott transformer, AT, and traction load are estabilished. The application of DVR(Dynamic Voltage Restorer) in electric traction system is proposed to compensate the voltage sag of traction network which is occured by the fault of utility source. It can be shown that application of the DVR in electric traction system is very useful to compensate the volatge sag from the result of related simulation works.

High Performance Control of Switched Reluctance Motor Drive System for Automobiles by C-dump Converter (C-dump Converter에 의한 차량용 스위치드 릴럭턴스 전동기 구동 시스템의 고성능제어)

  • Kim D.K.;Yoon Y.H.;Lee T.W.;Won C.Y.;Kim Y.R.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.860-865
    • /
    • 2003
  • Recently, SRMs are used in automobiles for power assistant steering, accessory motion control and traction drives. Especially in the motion control and traction drives, safety and efficiency are of paramount important. The paper describes the essential elements, faced in designing and constructing drive circuits for a switched reluctance motor for automobiles. These converters will be referred to as energy efficient C-dump converter and modified C-dump converter Energy efficient C-dump converter topology eliminate all the disadvantages of the C-dump converter without sacrificing its attractive features, and also provide some additional advantages that have lower number of power devices, full regenerative capability, free-wheeling in chopping or PWM mode, simple control strategy, and faster demagnetization during commutation. The experiments are peformed to verify the capability of proposed control method on 6/4 salient type SRM.

  • PDF

A Study on the Design and Speed Control of the Switched Reluctance Motor for Railway Traction Application (철도차량용 스위치드 릴럭턴스 전동기의 설계 및 속도제어에 관한 연구)

  • Jo, Hee;Kim, Kyeong-Hwa
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.237-243
    • /
    • 2012
  • In this paper, a magnetic analysis of SRM(Switched Reluctance Motor) using 3d finite element method considering end-coil effect is presented. SRM models with different stator pole shapes are taken into consideration for the analysis of magnetic characteristics. It is observed that a stator pole shape model having a pole shoe depth is the most suitable one for railway traction application because it gives an improved inductance and torque characteristic. For a speed control of SRM, the PI and sliding mode controllers are applied to designed SRM with magnetic characteristic data obtained from the magnetic analysis. The simulations are carried out using Matlab-Simulink and the control performance is analyzed. By employing the sliding mode controller, the transient response as well as the steady-state error are much improved under a load variation of railway resistance under operation.

A Study on Driving Simulation and Efficiency Maps with Nonlinear IPMSM Datasets

  • Kim, Won-Ho;Jang, Ik-Sang;Lee, Ki-Doek;Im, Jong-Bin;Jin, Chang-Sung;Koo, Dae-Hyun;Lee, Ju
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.71-73
    • /
    • 2011
  • Hybrid electric vehicles have attracted much attention of late, emphasizing the necessity of developing traction motors with a high input current and a wide speed range. Among such traction motors, various researches have been conducted on interior permanent-magnet synchronous motors (IPMSMs) with high power density and mechanical solidity. Due to the complexity of its parameters, however, with nonlinear motor characteristics and current vector control, it is actually difficult to accurately estimate the base speed within an actual operating speed range or a voltage limit. Moreover, it is impossible to construct an efficiency map as the efficiency differs according to the control mode. In this study, a simulation method for operation performance considering the nonlinearity of IPMSM was proposed. For this, datasets of various nonlinear parameters were made via the finite-element method and interpolation. Maximum torque-per-ampere and flux-weakening control were accurately simulated using the datasets, and an IPMSM efficiency map was accurately constructed based on the simulation. Lastly, the validity of the simulation was verified through tests.

Development of a Matlab Toolbox for Guidance & Traction Control Designs of an Articulated Transportation Vehicle (굴절차량의 안내/추진 제어 설계용 Toolbox)

  • Min, Kyung-Deuk;Yun, Kyoung-Han;Kim, Young Chol;Byun, Yeun-Sub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2074-2079
    • /
    • 2008
  • This paper presents a software toolbox with $Matlab^{(R)}$ developed for the various performance analysis of an automatic guidance system of the Bimodal Tram. The Bimodal Tram is a new kind of transportation vehicle which could be an all-wheel steered multiple-articulated vehicle. This vehicle has to be equipped with an automatic guidance, traction/braking, and docking system, In the stage of developing such a system, its validities and performances should be verified under various operation conditions. For the purpose of doing these things through simulation, this toolbox has been developed and demonstrated well by applying it to the KRRI model.

The Development of ZVZCS type Battery Charger for High Speed Trail Car with Ni-Cd Battery Charging Algorithm (Ni-Cd전지용 충전 알고리즘을 이용한 고속전철용 ZVZCS형 충전장치개발)

  • 김연준
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.548-551
    • /
    • 2000
  • The battery charger for high speed trail car is very important power source for the purpose of safty and system stability. it provides control power of VVVF, CVCF, DC/DC converter and inverter for traction motor. This paper included power circuit of the ZVZCS type battery charger for high speed trail car and battery included power circuit of the ZVZCS type battery charger for high speed trail car and inverter for traction motor. This paper included power circuit of the ZVZCS type battery charger for high speed trail car an battery charging algorithm. Also the optimum parallel operation of 50Kw battery charger for high speed trail car and charging control method of Ni-Cd battery illustrates validity and effectiveness through the experiments.

  • PDF

Effect on the Characteristics and Control Performance due to the Ventilation Hole Design of the Traction Motor (냉각 통풍홀 설계로 인한 견인 전동기 특성 및 제어 성능 영향 연구)

  • Kim, Ki-Chan;Lee, Jeong-Il;Kwon, Jung-Lock
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.801-803
    • /
    • 2001
  • On this study the motor design method with fairly good characteristics and control capability as well as cooling capability is presented with considering the magnetic effect due to ventilation hole, which is installed to prevent the temperature rise. When the input voltage rises due to critical variation in traction power supply system, the final ventilation hole is presented by checking the inductance parameter with clarifying the relation between saturation of the motor core and the ventilation hole.

  • PDF

Power Conversion Unit for Propulsion System of the High Speed Train (고속전철 추진시스템의 전력변환장치)

  • 이병송;변윤섭;백광선
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.2
    • /
    • pp.39-45
    • /
    • 1999
  • This paper presents the current-fed inverter of a TGV-K traction system with thyristor switches using phase control and commutation techniques. The current-fed inverters have two modes of operation which consist of forced commutation and natural commutation. In forced commutation mode, at speed of less than 120km/h, commutation is forced by means of the commutation capacitors and the thyristors. Above 120km/h, the thyristors operate in natural commutation mode. according to the voltages between phases of the motors. In this paper. the power conversion theory of the TGV-K traction system and the control principle of the converter and current-fed inverter are discussed.

  • PDF