• Title/Summary/Keyword: Tracking observer

Search Result 237, Processing Time 0.025 seconds

The Levitation Control of Maglev using State Observer (상태관측기를 이용한 자기부상시스템의 부상제어)

  • Sung, H.K.;Lee, J.M.;Jho, J.M.;Cho, H.J.;Kim, D.S.;Nam, Y.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1126-1127
    • /
    • 2006
  • Being controlled by a pole placement, levitation system should need many sensors such as measure air-gap, velocity, acceleration, and so on. However, these sensors have observational errors by changed temperature. This paper proposed a output compensated command tracking controller for reducing the error and reducing sensors. Simulation results will be provided to show the validity of the proposed scheme.

  • PDF

Optimal control of the State Feedback Variables for Controlling DC Motor (DC Motor 제어를 위한 상태궤환 변수의 최적제어)

  • 최진부
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.3
    • /
    • pp.31-42
    • /
    • 1985
  • Thig paper used two feedback sensors, that is, potentiometer and tachometer in order to control DC motor. Also, the state feedback and kalman regular type in the linear system or the state feedback and on-off relay type in the non-linear system are used as control meth-ods for optimal control values. This compared and analyzed the control estimate of tracking angles by the estimate of three branches of methods of position and speed measured, position and speed by PD and position, speed and covariance by an observer.

  • PDF

Vibration Control of Elastic Systems (탄성계의 진동제어)

  • Lee, S.J.;Ha, Y.K.;Park, Y.P.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.5-19
    • /
    • 1988
  • The feedback controllers for the active vibration control of elastic systems are developed using optimal regulator, optimal tracking, time optimal and noise observer algorithms. Using the modal analysis of the elastic systems, the effects of the actuator positions, the input weighting factor and the magnitude of the constraint of the actuator force are investigated.

  • PDF

Quantitative Analysis of C. elegans Mutant Type Using Movement and Reversal Features

  • Nah Won;Baek Joong-Hwan
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.417-420
    • /
    • 2004
  • Caenorhabditis (C) elegans is often used in genetic analysis in neuroscience because its simple organism; an adult hermaphrodite contains only 302 neuron. So the worm is often used to study of cancer, alzheimer disease, aging, etc. To analysis mutant type of the worm, an experienced observer was able to subjectively before, but requirements for objective analysis are now increasing. For this reason, we use automated tracking systems to extract global movement coordinate of the worm. In this paper, we extract features, which are related on reversal and movement of the worm. Using these features, we quantitatively analysis 6 type mutant by movement and reversal characteristic.

  • PDF

Estimation and Compensation of the Coulomb Friction in an Inverted Pendulum (쿨롱 마찰력 추정과 보상을 통한 역진자 시스템의 제어 성능 개선)

  • Park, Duck-Gee;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.11
    • /
    • pp.483-490
    • /
    • 2006
  • When the nonlinearities, such as friction and backlash, are not considered in the controller design, undesirable oscillations can occur in the steady-state response of a control system. This paper deals with a method to reduce oscillations that often appear in the steady-state response of a pendulum system, which is controlled by a state feedback controller based on the linearized system model. With an assumption that the oscillations shown in the steady-state are caused by the Coulomb friction, we improve the performance of stabilization and tracking by estimating and compensating for the Coulomb friction in the pendulum system. Experimental results show that the control performance can be improved sufficiently by the proposed method, when it is applied to an inverted cart pendulum which is a multi-variable unstable system. Furthermore, we could see that the Coulomb friction model used in the estimation of the friction is valid in applying the suggested method.

Path Tracking Control of 6X6 Skid Steering Unmanned Ground Vehicle for Real Time Traversability (실시간 주행 안정성 분석을 위한 6X6 스키드 조향 무인 자율 주행 차량의 경로 추종 제어)

  • Hong, Hyosung;Han, Jong-Boo;Song, Hajun;Jung, Samuel;Kim, Sung-Soo;Yoo, Wan Suk;Won, Mooncheol;Joo, Sanghyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.599-605
    • /
    • 2017
  • For an unmanned vehicle to be driven on the off-road terrain, it is necessary to consider the vehicle's stability. This paper suggests a path tracking controller for simulation of real-time vehicle stability analysis. The path tracking controller uses the preview distance to track the given trajectory. The disturbance moment is estimated using the yaw moment observer, and this information is used for compensation in the yaw moment control. On a curved path, the vehicle's desired velocity is determined from the curvature of the path. Because the vehicle is equipped with six independent motor driven wheels, the driving torques are distributed on all the wheels. The effectiveness of the path tracking controller is verified using ADAMS/MATLAB co-simulation.

Flight Control of Tilt-Rotor Airplane In Rotary-Wing Mode Using Adaptive Control Based on Output-Feedback (출력기반 적응제어기법을 이용한 틸트로터 항공기의 회전익 모드 설계연구)

  • Ha, Cheol-Keun;Im, Jae-Hyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.228-235
    • /
    • 2010
  • This paper deals with an autonomous flight controller design problem for a tilt-rotor aircraft in rotary-wing mode. The inner-loop algorithm is designed using the output-based approximate feedback linearization. The model error originated from the feedback linearization is cancelled within allowable tolerance by using single-hidden-layer neural network. According to Lyapunov direct stability theory, the adaptive update law is derived to run the neural network on-line, which is based on the linear observer dynamics. Moreover, the outer-loop algorithm is designed to track the trajectory generated from way-point guidance. Especially, heading and flight-path angle line-of-sight guidance are applied to the outer-loop to improve accuracy of the landing tracking performance. The 6-DOF nonlinear simulation shows that the overall performance of the flight control algorithm is satisfactory even though the collective input response shows instantaneous actuator saturation for a short time due to the lack of the neural network and the saturation protection logic in that loop.

Position Synchronization Control of Single Link Manipulators (단일 링크 머니퓰레이터들에 대한 위치 동기화 제어)

  • Song, Ki-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.6-12
    • /
    • 2011
  • Electric vehicles and robots are real-time distributed control systems composed of multiple drive subsystems using micro controller units. Each control subsystem should be modular, compact, power saving, interoperable and fault tolerable in order to be incorporated into the networked real-time distributed control system. Under the networked real-time distributed control the synchronization problem can be occurred to the position and orientation tracking control due to the load variance, mismatch and time delay between the multiple drive subsystems. This paper suggests two types of position synchronization control of the single link manipulators. One of them is composed of cross controller, Kalman filter and disturbance observer, and the other uses the generation of target trajectories to minimize the gradient vector of the scalar function which is composed of the sum of square errors between the reference input vector and the output vectors. The availability of the proposed control schemes is shown through the control experiments.

Adaptive Model-Free-Control-based Steering-Control Algorithm for Multi-Axle All-Terrain Cranes using the Recursive Least Squares with Forgetting (망각 순환 최소자승을 이용한 다축 전지형 크레인의 적응형 모델 독립 제어 기반 조향제어 알고리즘)

  • Oh, Kwangseok;Seo, Jaho
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.16-22
    • /
    • 2017
  • This paper presents the algorithm of an adaptive model-free-control-based steering control for multi-axle all-terrain cranes for which the recursive least squares with forgetting are applied. To optimally control the actual system in the real world, the linear or nonlinear mathematical model of the system should be given for the determination of the optimal control inputs; however, it is difficult to derive the mathematical model due to the actual system's complexity and nonlinearity. To address this problem, the proposed adaptive model-free controller is used to control the steering angle of a multi-axle crane. The proposed model-free control algorithm uses only the input and output signals of the system to determine the optimal inputs. The recursive least-squares algorithm identifies first-order systems. The uncertainty between the identified system and the actual system was estimated based on the disturbance observer. The proposed control algorithm was used for the steering control of a multi-axle crane, where only the steering input and the desired yaw rate were employed, to track the reference path. The controller and performance evaluations were constructed and conducted in the Matlab/Simulink environment. The evaluation results show that the proposed adaptive model-free-control-based steering-control algorithm produces a sound path-tracking performance.

Sensorless Speed Control of PMSM for Driving Air Compressor with Position Error Compensator (센서리스 위치오차보상기능을 가지고 있는 공기압축기 구동용 영구자석 동기모터의 센서리스 속도제어)

  • Kim, Youn-Hyun;Kim, Sol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.104-111
    • /
    • 2018
  • The sensorless control of high efficiency air compressors using a permanent magnet type synchronous motor as an oil-free air compressor is quite common. However, due to the nature of the air compressor, it is difficult to install a position sensor. In order to control the permanent magnet type synchronous motor at variable speed, the inclusion of a position sensor to grasp the position of the rotor is essential. Therefore, in order to achieve sensorless control, it is essential to use a permanent magnet type synchronous motor in the compressor. The position estimation method based on the back electromotive force, which is widely used as the sensorless control method, has a limitation in that position errors occur due either to the phase delay caused by the use of a stationary coordinate system or to the estimated back electromotive force in the transient state caused by the use of a synchronous coordinate system. Therefore, in this paper, we propose a method of estimating the position and velocity using a rotation angle tracking observer and reducing the speed ripple through a disturbance observer. An experimental apparatus was constructed using Freescale's MPU and the feasibility of the proposed algorithm was examined. It was confirmed that even if a position error occurs at a certain point in time, the position correction value converges to the actual vector position when the position error value is found.