• Title/Summary/Keyword: Tracking observer

Search Result 237, Processing Time 0.03 seconds

Position Control of Linear Synchronous Motor by Dual Learning (이중 학습에 의한 선형동기모터의 위치제어)

  • Park, Jung-Il;Suh, Sung-Ho;Ulugbek, Umirov
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.79-86
    • /
    • 2012
  • This paper proposes PID and RIC (Robust Internal-loop Compensator) based motion controller using dual learning algorithm for position control of linear synchronous motor respectively. Its gains are auto-tuned by using two learning algorithms, reinforcement learning and neural network. The feedback controller gains are tuned by reinforcement learning, and then the feedforward controller gains are tuned by neural network. Experiments prove the validity of dual learning algorithm. The RIC controller has better performance than does the PID-feedforward controller in reducing tracking error and disturbance rejection. Neural network shows its ability to decrease tracking error and to reject disturbance in the stop range of the target position and home.

Tracking Control Design for Actuating Fin in Underwater Vehicle Under Uncertain Load Torques (불확실한 부하저항을 받는 수중 운동체 구동부의 추적제어)

  • Kim, Dong-Hwan;Lee, Kyo-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.95-103
    • /
    • 1999
  • 수중운동체가 수중에서 진행할 때 외부 파도에 의한 불확실한 부하 저항을 받으므로 이에 대응하는 핀(조타) 구동부의 제어 문제를 고려한다. 본 논문에서 제시하는 제어기는 본체로부터의 지정 각도를 부여 받으면 이에 부응하여 핀의 각도와 각속도를 이용하여 제어기의 알고리즘을 구축하여 지정된 경로를 추적하게 한다. 또한 핀의 각속도 정보의 이용이 부득이 어려운 상황에 대처하기 위하여 핀의 각도만을 이용한 출력제어기나 추정기를 설계하여 주위 환경의 불확실성을 극복할 수 있는 제어기를 제안한다. DC서보 모터로 구성괸 핀 구동부에 대해 실제 데이터를 사용하여 제안된 제어기의 성능을 시뮬레이션을 통하여 검증한다.

  • PDF

Design of a Robust Position Tracking Controller for Flexible Joint Manipulator Using Motor Angle (모터 각도를 이용한 유연 관절 머니퓰레이터의 강인한 위치 추종 제어기 설계)

  • Lee, Sang-Myung;Kim, In-Hyuk;Son, Young Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1245-1247
    • /
    • 2014
  • This paper presents a robust position tracking controller for motor-driven flexible joint manipulators using only the motor angle measurement. The control problem is not easy because the link position is hard to estimate in the presence of parameter uncertainties. The proposed controller consists of a feedback linearization controller (FLC) and two proportional-integral observers (PIOs) that estimate both system states including the link position and an equivalent disturbance for compensating the parameter uncertainties. Comparative computer simulations are conducted to demonstrate the effectiveness of the proposed control algorithm.

Design of Nonlinear Controller for Tracking Control based on Genetic Fuzzy algorithm (유전 퍼지 알고리즘 기반의 추종 제어를 위한 비선형 제어기 설계)

  • Kong, Jung-Shik;Ahn, Sang-Min;Lee, Bo-Hee;Kim, Jin-Geol;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2684-2686
    • /
    • 2005
  • This paper presents design of nonlinear controller based on genetic-fuzzy algorithm. Motor system that is included at a humanoid robot has many nonlinear parameters such as saturation, backlash and so on. So, it is hard to control a humanoid robot because of these nonlinearities. Also, tracking following ability is also reduced by these nonlinearities. In this paper, fuzzy PID controller is proposed for reducing efficiency by saturation. At that time, genetic algorithm is supplied at making fuzzy rule in order to make optimal fuzzy PID controller. Also, disturbance observer is used to reduce the efficiency of backlash. All these processes are verified by simulation and experiment in the real humanoid robot.

  • PDF

Continuous Variable Structure Controller for the Tracking Control of PMSM (영구자석 동기전동기의 위치 추적 제어를 위한 연속 가변 구조 제어기)

  • Hong, Chan-Ho;Chung, Se-Kyo;Lee, Jung-Hoon;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.261-263
    • /
    • 1995
  • The continuous sliding mode controller with disturbance observer for the tracking control of permanent magnet synchronous motor(PMSM) is presented. In spite of the robust performance of variable structure control, there exists an undesirable chattering problem, which may be very harmful in some cases. To alleviate the problem, continuous sliding mode controller with continuous saturation function is proposed and also the prescribed performance can be obtained by efficient compensation of disturbance. Experimental results using 7.5 kW, 4000 rpm motor which is controlled by TMS320C30 DSP, are shown to demonstrate the usefulness of the proposed algorithm.

  • PDF

Design of a Simultaneous Control System of Position and Force with a Pneumatic Cylinder Driving Apparatus (공기압 실린더 구동 장치를 이용한 힘과 위치 동시 제어계 설계)

  • Jang, Ji-Seong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1614-1619
    • /
    • 2003
  • In this study, position and force simultaneous trajectory tracking control system with pneumatic cylinder driving apparatus is proposed. The pneumatic cylinder driving apparatus that consists of two pneumatic cylinders constrained in series and two proportional flow control valves offers a considerable advantage as to non-interaction of the actuators because of the low stiffness of the pneumatic cylinders. The controller applied to the driving system is composed of a non-interaction controller to compensate for interaction of two cylinders and a disturbance observer to reduce the effect of model discrepancy of the driving system in the low frequency range that cannot be suppressed by the non-interaction controller. The experimental results with the proposed control system show that the interacting effects of two cylinders are eliminated remarkably and the proposed control system tracks the given position and force trajectories accurately.

  • PDF

Software-Based Resolver-to-Digital Converter by Synchronous Demodulation Method including Lag Compensator (지연보상 동기복조방법에 의한 소프트웨어 레졸버-디지털 변환기)

  • Kim, Youn-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.756-761
    • /
    • 2013
  • This paper propose the new demodulation method that can detect resolver signal's peak at the time of position estimation when the position information is required during current controller period. The proposed method is performed in a synchronous demodulation way with exciting signal and also cover a capability which can compensate the lag element of exciting signal caused by the resolver's inductive component and filter circuit. This paper carried out the experiment to investigate the validity and performance of the suggested method by using the test board made up of DSP and demodulation circuit. The test results show that the proposed method is theoretically clear and work completely as expected from making sure of sampling resolver signal's peak at the time of position estimation. In addition, Software position tracking algorithm is executed with the demodulated signals generated by the suggested method and an exact position can be estimated.

A Study on the Gain Scheduling Speed Controller of Permanent Magnet Synchronous Generators for MW-Class Direct-Driven Wind Turbine Systems (MW급 직접구동형 풍력터빈시스템을 위한 영구자석 동기발전기의 게인 스케쥴링 속도제어기에 대한 연구)

  • Choi, Young-Sik;Yu, Dong-Young;Choi, Han-Ho;Jung, Jin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.48-59
    • /
    • 2011
  • This paper presents a new gain scheduling speed controller of permanent magnet synchronous generators(PMSG) for MW-class direct-driven wind turbine systems. The proposed gain scheduling speed controller performs the speed tracking at more than one operating point, and the first-order torque observer estimates the turbine torque which is needed to precisely control the speed of PMSG. The proposed speed controller verifies that the PMSG can successfully follow the reference speed which is determined via the maximum power point tracking(MPPT) control and pitch control under turbulent wind conditions. The proposed speed control algorithm is simulated using Simulink and its performance is confirmed through comparison with the results by PI control method.

Analysis and Compensation Control of Dead-Time Effect on Space Vector PWM

  • Shi, Jie;Li, Shihua
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.431-442
    • /
    • 2015
  • Dead-time element must be set into space vector pulsed width modulation signals to avoid short circuits of the inverter. However, the dead-time element distorts the output voltage vector, which deteriorates the performance of electrical machine drive system. In this paper, dead-time effect and its compensation control strategy are analyzed. Based on the analysis, the voltage distortion caused by dead-time is regarded as two disturbances imposed on dq axes in the rotor reference frame, which degenerates the current tracking performance. To inhibit the adverse effect caused by the dead-time, a control scheme using two linear extended state observers is proposed. This method provides a strong ability to suppress dead-time effects. Simulations and experiments are conducted on a permanent magnet synchronous motor drive system to demonstrate the effectiveness of the proposed method.

High-Accuracy Motion Control of Linear Synchronous Motor Using Reinforcement Learning (강화학습에 의한 선형동기 모터의 고정밀 제어)

  • Jeong, Seong-Hyen;Park, Jung-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1379-1387
    • /
    • 2011
  • A PID-feedforward controller and Robust Internal-loop Compensator (RIC) based on reinforcement learning using random variable sequences are provided to auto-tune parameters for each controller in the high-precision position control of PMLSM (Permanent Magnet Linear Synchronous Motor). Experiments prove the well-tuned controller could be reduced up to one-fifth level of tracking errors before learning by reinforcement learning. The RIC compared to the PID-feedforward controller showed approximately twice the performance in reducing tracking error and disturbance rejection.