• Title/Summary/Keyword: Tracking control algorithm

Search Result 1,227, Processing Time 0.025 seconds

A Performance Analysis of a Glidepath Tracking Algorithm for Autolanding of a UAV (무인항공기 자동착륙을 위한 활강궤적 추종 알고리듬 성능분석)

  • Choi, Young-Hyun;Koo, Hueon-Joon;Kim, Jong-Sung;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.262-269
    • /
    • 2005
  • Automatic landing of UAVs receives increasing interest these days, with increasing number of the developed UAV systems. In this paper, a glidepath tracking algorithm of the subscale UAV was proposed and the performance was analyzed. Flight data analysis shows that the existing autolanding flight control algorithm has a classical type glidepath control. This paper presents an alternative glidepath tracking strategy based on embedded flight control law. The performance of the proposed strategy was investigated through the TDP(Touch Down Point) error analysis with regard to various flight environment: steady headwind, atmospheric disturbance, communication transfer delay. It was verified that the proposed glidepath tracking strategy can be successfully applied to the practical autolanding of UAV systems.

Target Tracking of the Wheeled Mobile Robot using the Combined Visual Servo Control Method (혼합 비주얼 서보 제어 기법을 이용한 이동로봇의 목표물 추종)

  • Lee, Ho-Won;Kwon, Ji-Wook;Hong, Suk-Kyo;Chwa, Dong-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1245-1254
    • /
    • 2011
  • This paper proposes a target tracking algorithm for wheeled mobile robots using in various fields. For the stable tracking, we apply a vision system to a mobile robot which can extract targets through image processing algorithms. Furthermore, this paper presents an algorithm to position the mobile robot at the desired location from the target by estimating its relative position and attitude. We show the problem in the tracking method using the Position-Based Visual Servo(PBVS) control, and propose a tracking method, which can achieve the stable tracking performance by combining the PBVS control with Image-Based Visual Servo(IBVS) control. When the target is located around the outskirt of the camera image, the target can disappear from the field of view. Thus the proposed algorithm combines the control inputs with of the hyperbolic form the switching function to solve this problem. Through both simulations and experiments for the mobile robot we have confirmed that the proposed visual servo control method is able to enhance the stability compared to of the method using only either PBVS or IBVS control method.

Tracking Control of a Electro-hydraulic Servo System Using 2-Dimensional Real-Time Iterative Learning Algorithm (실시간 2차원 학습 신경망을 이용한 전기.유압 서보시스템의 추적제어)

  • 곽동훈;조규승;정봉호;이진걸
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.435-441
    • /
    • 2003
  • This paper addresses that an approximation and tracking control of realtime recurrent neural networks(RTRN) using two-dimensional iterative teaming algorithm for an electro-hydraulic servo system. Two dimensional learning rule is driven in the discrete system which consists of nonlinear output fuction and linear input. In order to control the trajectory of position, two RTRN with the same network architecture were used. Simulation results show that two RTRN using 2-D learning algorithm are able to approximate the plant output and desired trajectory to a very high degree of a accuracy respectively and the control algorithm using two identical RTRN was very effective to trajectory tracking of the electro-hydraulic servo system.

A fuzzy SOC based pressure tracking controller design for hydroforming process (Fuzzy SOC를 이용한 하이드로 포밍 고정의 압력제어기 설계)

  • 김문종;박희재;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.350-355
    • /
    • 1990
  • A pressure tracking of hydroforming process is considered in this paper. To account for nonlinearities and uncertainty of the process. A fuzzy SOC based iterative learning control algorithm is proposed. A series of experimentals were performed for the pressure tracking control of the process. The experimental results show that regardless of inherent nonlinearties and uncertainties associated with hydraulic system. A good pressure tracking control performance is obtained using the proposed fuzzy learning control algorithm.

  • PDF

Design of an Intelligent Controller of Mobile Robot Using Genetic Algorithm (제네틱 알고리즘을 이용한 이동로봇의 지능제어기 설계)

  • 정동연;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.207-212
    • /
    • 2003
  • This paper proposed trajectory tracking control of Mobile Robot. Trajectory tracking control scheme are Real coding Genetic-Algorithm and Back-propergation Algorithm. Control scheme ability experience proposed simulation.

  • PDF

Efficient Target Tracking with Adaptive Resource Management using a Passive Sensor (수동센서를 이용한 효율적인 표적추적을 위한 적응적 자원관리 알고리듬 연구)

  • Kim, Woo Chan;Lee, Haeho;Ahn, Myonghwan;Lee, Bum Jik;Song, Taek Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.536-542
    • /
    • 2016
  • To enhance tracking efficiency, a target-tracking filter with a resource management algorithm is required. One of the resource management algorithms chooses or evaluates the proper sampling time using cost functions which are related to the target tracking filter. We propose a resource management algorithm for bearing only tracking environments. Since the tracking performance depends on the system observability, the bearing-only tracking is one of challenging target-tracking fields. The proposed algorithm provides the adaptive sampling time using the variation rate of the error covariance matrix from the target-tracking filter. The simulation verifies the efficiency performance of the proposed algorithm.

Efficiency optimization control of photovoltaic tracking system with climate and environment variation (기후환경 변화에 대한 태양광 추적 시스템의 효율최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Jun, Young-Sun;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.403-406
    • /
    • 2008
  • In this paper proposes a novel tracking algorithm regarding the power loss when operating a tracking system for a rapidly changing insolation to improve the power of PV tracking system. In case of tracking an azimuth and altitude of the sun in realtime, therefore, the actual PV power is less increasing than the power of tracking system fixed a specific position. To reduce the power loss, this paper proposes a nonel control algorithm of the tracking system. The paper is analyzed efficiency about conventional PV tracking method, comparing proposed algorithm with high performance method. We show propriety of proposed algorithm by means of the demonstrable study.

  • PDF

The Real-time Neural Network Control of Mobile Robot Based-on Genetic Algorithm (유전 알고리즘을 이용한 이동로봇의 실시간 신경회로망 제어)

  • 정경규;김종수;이우송;이명재;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.561-566
    • /
    • 2002
  • This paper proposed trajectory tracking control of Mobile Robot. Trajectory tracking control scheme are Real coding Genetic-Algorithm and Back-propergation Algorithm. Control scheme ability experience proposed simulation.

  • PDF

The Real-time Neural Network Control of Mobile Robot Based-on Genetic Algorithm (유전 알고리즘을 이용한 이동로봇의 실시간 신경회로망 제어)

  • 정경규;정동연;이우송;김경년;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.146-151
    • /
    • 2001
  • This paper proposed trajectory tracking control of Mobile Robot. Trajectory tracking control scheme are Real coding Genetic-Algorithm and Back-propergation Algorithm. Control scheme ability experience proposed simulation.

  • PDF