• Title/Summary/Keyword: Tracking Time

Search Result 3,297, Processing Time 0.032 seconds

Development of a Non-contact Input System Based on User's Gaze-Tracking and Analysis of Input Factors

  • Jiyoung LIM;Seonjae LEE;Junbeom KIM;Yunseo KIM;Hae-Duck Joshua JEONG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.1
    • /
    • pp.9-15
    • /
    • 2023
  • As mobile devices such as smartphones, tablets, and kiosks become increasingly prevalent, there is growing interest in developing alternative input systems in addition to traditional tools such as keyboards and mouses. Many people use their own bodies as a pointer to enter simple information on a mobile device. However, methods using the body have limitations due to psychological factors that make the contact method unstable, especially during a pandemic, and the risk of shoulder surfing attacks. To overcome these limitations, we propose a simple information input system that utilizes gaze-tracking technology to input passwords and control web surfing using only non-contact gaze. Our proposed system is designed to recognize information input when the user stares at a specific location on the screen in real-time, using intelligent gaze-tracking technology. We present an analysis of the relationship between the gaze input box, gaze time, and average input time, and report experimental results on the effects of varying the size of the gaze input box and gaze time required to achieve 100% accuracy in inputting information. Through this paper, we demonstrate the effectiveness of our system in mitigating the challenges of contact-based input methods, and providing a non-contact alternative that is both secure and convenient.

Fast Natural Feature Tracking Using Optical Flow (광류를 사용한 빠른 자연특징 추적)

  • Bae, Byung-Jo;Park, Jong-Seung
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.345-354
    • /
    • 2010
  • Visual tracking techniques for Augmented Reality are classified as either a marker tracking approach or a natural feature tracking approach. Marker-based tracking algorithms can be efficiently implemented sufficient to work in real-time on mobile devices. On the other hand, natural feature tracking methods require a lot of computationally expensive procedures. Most previous natural feature tracking methods include heavy feature extraction and pattern matching procedures for each of the input image frame. It is difficult to implement real-time augmented reality applications including the capability of natural feature tracking on low performance devices. The required computational time cost is also in proportion to the number of patterns to be matched. To speed up the natural feature tracking process, we propose a novel fast tracking method based on optical flow. We implemented the proposed method on mobile devices to run in real-time and be appropriately used with mobile augmented reality applications. Moreover, during tracking, we keep up the total number of feature points by inserting new feature points proportional to the number of vanished feature points. Experimental results showed that the proposed method reduces the computational cost and also stabilizes the camera pose estimation results.

A Maximum Likelihood Estimator Based Tracking Algorithm for GNSS Signals

  • Won, Jong-Hoon;Pany, Thomas;Eissfeller, Bernd
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.15-22
    • /
    • 2006
  • This paper presents a novel signal tracking algorithm for GNSS receivers using a MLE technique. In order to perform a robust signal tracking in severe signal environments, e.g., high dynamics for navigation vehicles or weak signals for indoor positioning, the MLE based signal tracking approach is adopted in the paper. With assuming white Gaussian additive noise, the cost function of MLE is expanded to the cost function of NLSE. Efficient and practical approach for Doppler frequency tracking by the MLE is derived based on the assumption of code-free signals, i.e., the cost function of the MLE for carrier Doppler tracking is used to derive a discriminator function to create error signals from incoming and reference signals. The use of the MLE method for carrier tracking makes it possible to generalize the MLE equation for arbitrary codes and modulation schemes. This is ideally suited for various GNSS signals with same structure of tracking module. This paper proposes two different types of MLE based tracking method, i.e., an iterative batch processing method and a non-iterative feed-forward processing method. The first method is derived without any limitation on time consumption, while the second method is proposed for a time limited case by using a 1st derivative of cost function, which is proportional to error signal from discriminators of conventional tracking methods. The second method can be implemented by a block diagram approach for tracking carrier phase, Doppler frequency and code phase with assuming no correlation of signal parameters. Finally, a state space form of FLL/PLL/DLL is adopted to the designed MLE based tracking algorithm for reducing noise on the estimated signal parameters.

  • PDF

Direct tracking of noncircular sources for multiple arrays via improved unscented particle filter method

  • Yang Qian;Xinlei Shi;Haowei Zeng;Mushtaq Ahmad
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.394-403
    • /
    • 2023
  • Direct tracking problem of moving noncircular sources for multiple arrays is investigated in this study. Here, we propose an improved unscented particle filter (I-UPF) direct tracking method, which combines system proportional symmetry unscented particle filter and Markov Chain Monte Carlo (MCMC) algorithm. Noncircular sources can extend the dimension of sources matrix, and the direct tracking accuracy is improved. This method uses multiple arrays to receive sources. Firstly, set up a direct tracking model through consecutive time and Doppler information. Subsequently, based on the improved unscented particle filter algorithm, the proposed tracking model is to improve the direct tracking accuracy and reduce computational complexity. Simulation results show that the proposed improved unscented particle filter algorithm for noncircular sources has enhanced tracking accuracy than Markov Chain Monte Carlo unscented particle filter algorithm, Markov Chain Monte Carlo extended Kalman particle filter, and two-step tracking method.

Real Time Object Tracking Method using Multiple Cameras (다중 카메라를 이용한 실시간 객체 추적 방법)

  • Jang, In-Tae;Kim, Dong-Woo;Song, Young-Jun;Kwon, Hyeok-Bong;Ahn, Jae-Hyeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.4
    • /
    • pp.51-59
    • /
    • 2012
  • Recently, the study about object tracking using image processing has been active in the field of security and surveillance. Existing security and surveillance systems using multiple cameras have been operating independently. Thus, the chase was difficult when the tracking object move to other monitored areas. In this paper, we propose the way to change the control of camera automatically following the moving direction of objects in multiple cameras. The proposed method detects the object and tracks the object using color information and direction information of object. The color information obtains using the hue and the direction information obtains using the optical flow. At this time, the optical flow is detected for the entire image area of an object that is not applied only to reduce the computational complexity makes it possible to track in real time. In addition, it can be solved to inconvenience of security surveillance system to use existing camera by tracking an object automatically.

Real-time camera tracking using co-planar feature points (동일 평면상에 존재하는 특징점 검출을 이용한 실시간 카메라 추적 기법)

  • Seok-Han Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.5
    • /
    • pp.358-366
    • /
    • 2024
  • This paper proposes a method for the real-time camera tracking which detects and employs feature points located on a planar object in 3D space. The proposed approach operates in two stages. First, multiple feature points are detected in the 3D space, and then only those that exist on the planar object are selected. The camera's extrinsic parameters are then estimated using the projective geometry relationship between the feature points of the plane and the camera's image plane. The experiments are conducted in a typical indoor environment with regular lighting, without any special illumination setups. In contrast to conventional approaches, the proposed method can detect new feature points on the planar object in real-time and employ them for the camera tracking. This allows for continuous tracking even when the reference features for the camera pose initialization are not available. The experimental results show an average re-projection error of about 5 to 7 pixels, which is relatively small given the image resolution, and demonstrating that camera tracking is possible even in the absence of reference features within the image.

Time-Matching Poisson Multi-Bernoulli Mixture Filter For Multi-Target Tracking In Sensor Scanning Mode

  • Xingchen Lu;Dahai Jing;Defu Jiang;Ming Liu;Yiyue Gao;Chenyong Tian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1635-1656
    • /
    • 2023
  • In Bayesian multi-target tracking, the Poisson multi-Bernoulli mixture (PMBM) filter is a state-of-the-art filter based on the methodology of random finite set which is a conjugate prior composed of Poisson point process (PPP) and multi-Bernoulli mixture (MBM). In order to improve the random finite set-based filter utilized in multi-target tracking of sensor scanning, this paper introduces the Poisson multi-Bernoulli mixture filter into time-matching Bayesian filtering framework and derive a tractable and principled method, namely: the time-matching Poisson multi-Bernoulli mixture (TM-PMBM) filter. We also provide the Gaussian mixture implementation of the TM-PMBM filter for linear-Gaussian dynamic and measurement models. Subsequently, we compare the performance of the TM-PMBM filter with other RFS filters based on time-matching method with different birth models under directional continuous scanning and out-of-order discontinuous scanning. The results of simulation demonstrate that the proposed filter not only can effectively reduce the influence of sampling time diversity, but also improve the estimated accuracy of target state along with cardinality.

Coordinates Tracking Algorithm Design (표적 좌표지향 알고리즘 설계)

  • 박주광
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.62-76
    • /
    • 2002
  • This paper describes the design of a Coordinates Tracking algorithm for EOTS and its error analysis. EOTS stabilizes the image sensors such as FLIR, CCD TV camera, LRF/LD, and so on, tracks targets automatically, and provides navigation capability for vehicles. The Coordinates Tracking algorithm calculates the azimuth and the elevation angle of EOTS using the inertial navigation system and the attitude sensors of the vehicle, so that LOS designates the target coordinates which is generated by a Radar or an operator. In the error analysis in this paper, the unexpected behaviors of EOTS that is due to the time delay and deadbeat of the digital signals of the vehicle equipments are anticipated and the countermeasures are suggested. This algorithm is verified and the error analysis is confirmed through simulations. The application of this algorithm to EOTS will improve the operational capability by reducing the time which is required to find the target and support especially the flight in a night time flight and the poor weather condition.

Vehicle Tracking using Sequential Monte Carlo Filter (순차적인 몬테카를로 필터를 사용한 차량 추적)

  • Lee, Won-Ju;Yun, Chang-Yong;Kim, Eun-Tae;Park, Min-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.434-436
    • /
    • 2006
  • In a visual driver-assistance system, separating moving objects from fixed objects are an important problem to maintain multiple hypothesis for the state. Color and edge-based tracker can often be "distracted" causing them to track the wrong object. Many researchers have dealt with this problem by using multiple features, as it is unlikely that all will be distracted at the same time. In this paper, we improve the accuracy and robustness of real-time tracking by combining a color histogram feature with a brightness of Optical Flow-based feature under a Sequential Monte Carlo framework. And it is also excepted from Tracking as time goes on, reducing density by Adaptive Particles Number in case of the fixed object. This new framework makes two main contributions. The one is about the prediction framework which separating moving objects from fixed objects and the other is about measurement framework to get a information from the visual data under a partial occlusion.

  • PDF

A Low Cost Maximum Power Point Tracking Technique for the Solar Charger

  • Nguyen, Thanh Tuan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.5-6
    • /
    • 2012
  • In this paper, a simplified maximum power point tracking technique for the solar charger is presented. Main advantages of the proposed charger include low cost and optimized charge time. The maximum power point tracking method is used to deliver the maximum power from PV array to the battery thereby reducing the charge time. Moreover, the proposed technique which tracks the maximum power point by adjusting output current helps reduce the quantity of required number of sensors for the charger. The experimental protype was implemented by using an 80W PV array, a buck converter and a digital signal processor to verify the feasibility of the proposed method.

  • PDF