• Title/Summary/Keyword: Tracking Mode

Search Result 645, Processing Time 0.162 seconds

IEEE 802.11-based Power-aware Location Tracking System (저전력을 고려한 IEEE 802.11 기반 위치 추적 시스템)

  • Son, Sang-Hyun;Baik, Jong-Chan;Baek, Yun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7B
    • /
    • pp.578-585
    • /
    • 2012
  • Location tracking system through GPS and Wi-Fi is available at no additional cost in an environment of IEEE 802.11-based wireless network. It is useful for many applications in outdoor environment. However, a previous systems used for general device to tag. It is unsuitable for power aware location tracking system because general devices is more expensive and non-optimized for tracking. The hand-off method of IEEE 802.11 standard is not enough considering power consumption. This thesis analyzes the previous location tracking systems and proposes power aware system. First, we designed and implemented tag to optimize location tracking. Next, we propose low-power hand-off method and low-power behavior model in implemented tag. The proposed hand-off method resolve power problem by using the location information and behavior model minimize power consumption of tag through power-saving mode and the concept of duty cycle. To evaluating proposed methods and system performance, we perform simulations and experiments in real environment. And then, we calculate tag's power consumption based on the actual measured current consumption of each operation. In a simulation result, the proposed behavior model and hand-off method reduced about 98%, 59% than the standard's hand-off and default behavior model.

Enhanced Variable Structure Control With Fuzzy Logic System

  • Charnprecharut, Veeraphon;Phaitoonwattanakij, Kitti;Tiacharoen, Somporn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.999-1004
    • /
    • 2005
  • An algorithm for a hybrid controller consists of a sliding mode control part and a fuzzy logic part which ar purposely for nonlinear systems. The sliding mode part of the solution is based on "eigenvalue/vector"-type controller is used as the backstepping approach for tracking errors. The fuzzy logic part is a Mamdani fuzzy model. This is designed by applying sliding mode control (SMC) method to the dynamic model. The main objective is to keep the update dynamics in a stable region by used SMC. After that the plant behavior is presented to train procedure of adaptive neuro-fuzzy inference systems (ANFIS). ANFIS architecture is determined and the relevant formulation for the approach is given. Using the error (e) and rate of error (de), occur due to the difference between the desired output value (yd) and the actual output value (y) of the system. A dynamic adaptation law is proposed and proved the particularly chosen form of the adaptation strategy. Subsequently VSC creates a sliding mode in the plant behavior while the parameters of the controller are also in a sliding mode (stable trainer). This study considers the ANFIS structure with first order Sugeno model containing nine rules. Bell shaped membership functions with product inference rule are used at the fuzzification level. Finally the Mamdani fuzzy logic which is depends on adaptive neuro-fuzzy inference systems structure designed. At the transferable stage from ANFIS to Mamdani fuzzy model is adjusted for the membership function of the input value (e, de) and the actual output value (y) of the system could be changed to trapezoidal and triangular functions through tuning the parameters of the membership functions and rules base. These help adjust the contributions of both fuzzy control and variable structure control to the entire control value. The application example, control of a mass-damper system is considered. The simulation has been done using MATLAB. Three cases of the controller will be considered: for backstepping sliding-mode controller, for hybrid controller, and for adaptive backstepping sliding-mode controller. A numerical example is simulated to verify the performances of the proposed control strategy, and the simulation results show that the controller designed is more effective than the adaptive backstepping sliding mode controller.

  • PDF

The Design and Performance Test of Miniaturized Sled Type Dual-Servo Actuator (초소형 Sled-type 이중 서보 엑추에이터 설계 및 특성 분석)

  • 강동우;김기현;정재화;권대갑
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.357-360
    • /
    • 2002
  • Nowadays, the improvement and development of Multi-media, information and communication technology are rapidly processed. And many products, for example, digital camera, digital camcorder, and PDA, are used for them. They need large data storage capacity and small size, light storage system. Due to that, many studies and researches in data storage system have been carried out. Especially, micro drive system was presented by IBM.(1) However, its system is expensive and uneasy to be portable. In ODD technologies, 1 inch drive system is not yet or in processing status.(2) If to be possible and to be come up, it is cheap than HDD system and easy to transfer information. In this paper, a miniaturized actuator(about linch) is designed and tested for ODD system. Specially, it is adapted for NFR(Near-field Recoding) system using SIL(Solid Immersion Lens). It is the dual-servo actuator which consists of a coarse actuator and fine actuator. Its actuating force generation method is VCM(Voice Ceil Motor). The fine actuator has 4-wire suspensions and bobbin wrapped by coil and includes focusing motion as well as tracking motion. The coarse actuator has an actuating coil and V-grooved guide mechanism. Also, the characteristics of the designed actuator is estimated by sine-swept mode and LDV(Laser Doppler Vibro-meter).

  • PDF

Automatic P/PI speed controller design for industry servo drives (산업용 서보 구동 시스템을 위한 자동 P/PI 속도 제어기 설계)

  • Bae, Sang-Gyu;Seok, Jul-Ki;Kim, Kyung-Tae;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.179-181
    • /
    • 2003
  • Conventional P/PI speed controller of today's servo drives should be manually tuned the controller switching set-point by trial-and-errors, which may translate the drive system down-time and loss of productivity. The adjustable drive performance is heavily dependent on the qualify of the expert knowledge and becomes inadequate in applications where the operating conditions change in a wide range, i.e., tracking command, cceleration/deceleration time, and load disturbances. In this paper, the demands on simple controls/setup are discussed for industry servo drives. Analyzing the frequency content of motor torque command, P/PI control mode switching is automatically peformed with some prior knowledge of the mechanical dynamics. The dynamic performance of the proposed scheme assures a desired tracking response curve with minimal oscillation and settling time over the whole operating conditions. For comprehensive comparison of traditional P/PI control scheme, extensive test is carried out on actual servo system.

  • PDF

Positioning and vibration suppression for multiple degrees of freedom flexible structure by genetic algorithm and input shaping

  • Lin, J.;Chiang, C.B.
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.347-365
    • /
    • 2014
  • The main objective of this paper is to develop an innovative methodology for the vibration suppression control of the multiple degrees-of-freedom (MDOF) flexible structure. The proposed structure represented in this research as a clamped-free-free-free truss type plate is rotated by motors. The controller has two loops for tracking and vibration suppression. In addition to stabilizing the actual system, the proposed feedback control is based on a genetic algorithm (GA) to seek the primary optimal control gain for tracking and stabilization purposes. Moreover, input shaping is introduced for the control scheme that limits motion-induced elastic vibration by shaping the reference command. Experimental results are presented, demonstrating that, in the control loop, roll and yaw angles track control and elastic mode stabilization. It was also demonstrated that combining the input shaper with the proportional-integral-derivative (PID) feedback method has been shown to yield improved performance in controlling the flexible structure system. The broad range of problems discussed in this research is valuable in civil, mechanical, and aerospace engineering for flexible structures with MDOM motion.

Development and Flight Test of Unmanned Autonomous Rotor Navigation System Based on Virtual Instrumentation Platform (Virtual Instrumentation 플랫폼 기반 무인 자율 로터 항법시스템 개발 및 비행시험)

  • Lee, Byoung-Jin;Park, Sang-Jun;Lee, Seung-Jun;Kim, Chang-Joo;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.833-842
    • /
    • 2011
  • The objectives of this research are development of guidance, navigation and control system for RUAV on virtual instrumentation and real flight test. For this research, the system is divided to DAQ (data acquisition) section, actuator section and controller section. And the hardware and software on each sections are realized on LabVIEW base. Waypoint guidance and control of auto flight are realized using PID gain tuning and waypoint vector tracking guidance algorism. For safe flight test, auto/manual switching module isolated from FCS (Flight Control System) is developed. By using the switch module, swift mode change was achieved during emergency flight case. Consequently, a meter level error of flight performance is achieved.

Autopilot Design of an Autonomous Underwater Vehicle Using Robust Control

  • Jung, Keum-Young;Kim, In-Soo;Yang, Seung-Yun;Lee, Man-Hyung
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.264-269
    • /
    • 2002
  • In this paper, Η$_{\infty}$ depth and course controller of an AUV(Autonomous Underwater Vehicle) using Η$_{\infty}$ servo control is proposed. The Η$_{\infty}$ servo problem is formulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the Η$_{\infty}$ servo problem is as fellows: first, this problem is modified as an Η$_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The Η$_{\infty}$ depth and course controller are designed to satisfy with the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(wave force, wave moment, tide). The performances of the designed controllers are evaluated with computer simulations, and finally these simulation results show the usefulness and application of the proposed Η$_{\infty}$ depth and course control system.

Robot System Design Capable of Motion Recognition and Tracking the Operator's Motion (사용자의 동작인식 및 모사를 구현하는 로봇시스템 설계)

  • Choi, Yonguk;Yoon, Sanghyun;Kim, Junsik;Ahn, YoungSeok;Kim, Dong Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.605-612
    • /
    • 2015
  • Three dimensional (3D) position determination and motion recognition using a 3D depth sensor camera are applied to a developed penguin-shaped robot, and its validity and closeness are investigated. The robot is equipped with an Asus Xtion Pro Live as a 3D depth camera, and a sound module. Using the skeleton information from the motion recognition data extracted from the camera, the robot is controlled so as to follow the typical three mode-reactions formed by the operator's gestures. In this study, the extraction of skeleton joint information using the 3D depth camera is introduced, and the tracking performance of the operator's motions is explained.

Control of Robot Manipulators Using Time-Delay Estimation and Fuzzy Logic Systems

  • Bae, Hyo-Jeong;Jin, Maolin;Suh, Jinho;Lee, Jun Young;Chang, Pyung-Hun;Ahn, Doo-sung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1271-1279
    • /
    • 2017
  • A highly accurate model-free controller is proposed for trajectory tracking control of robot manipulators. The proposed controller incorporates time-delay estimation (TDE) to estimate and cancel continuous nonlinearities of robot dynamics, and exploits fuzzy logic systems to suppress the effect of the TDE error, which is due to discontinuous nonlinearities such as friction. To this end, integral sliding mode is defined using desired error dynamics, and a Mamdani-type fuzzy inference system is constructed. As a result, the proposed controller achieves the desired error dynamics well. Implementation of the proposed controller is easy because the design of the controller is intuitive and straightforward, and calculations of the complex robot dynamics are not required. The tracking performance of the proposed controller is verified experimentally using a 3-degree of freedom PUMA-type robot manipulator.

Design of Adaptive Controller using Switching Mode with Fuzzy inference and its application for industry Automation Facility (퍼지추론의 스위칭 특성을 이용한 적응제어기 설계 및 산업용 자동화 설비에의 응용)

  • 이형찬
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.1
    • /
    • pp.60-68
    • /
    • 1999
  • This paper deals with the tracking control problem of industrial robotic manipulators with unknown or changing dynamics. The proposed method makes use of multiple moodels and switching mechanism by fuzzy inference of the manipulator in an indirect adaptive controller architecture. The models used for the indmtification of the manipliator are identical, except for the initial estimates of the unknown inertial pararmeters of the manipulator and its load. The torque input that is applied to the joint actuators is determined at every instant by the identification model that best approximates the robot dynamics. Simulation results are also included to dermnstrate the improvement in the tracking perfermance when the proposed method is used.s used.

  • PDF