• 제목/요약/키워드: Tracked Vehicle Suspension

검색결과 28건 처리시간 0.024초

반능동 현수장치의 실시간 시뮬레이션용 궤도차량 모델 개발 (Development of a Tracked Vehicle Model for Real-time Simulation of Semi-active Suspension System)

  • 손영일;이종호;송병석
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.135-143
    • /
    • 2003
  • In this study, a real-time simulation model was developed for tracked vehicles with in-arm type semi-active hydro-pneumatic suspension unit using MATLAB S-functions. Since the vehicle model uses relative coordinates and massless link elements, the developed model has an enhanced analytic time performance. Through the comparison of simulation results with multi-body software(DADS), the vehicle model is verified. A controller using on-off skyhook control algorithm is designed with the pilot-centre]led proportional valve based on conventional damper characteristics. Exploiting the developed tracked vehicle model with other subsystem model such as a controller model, a suspension unit model, and a test road model, computer simulations are carried out. Control simulation results with the developed tracked vehicle model show that the semi-active suspension control system has a better performance than the conventional suspension system.

Preview Control of High Mobility Tracked Vehicle Suspension with multiple wheels

  • Kim, Yoonsun;Park, Youngjin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.115.3-115
    • /
    • 2002
  • To improve the performance of the tracked vehicle system, we examined the feasibility of using the preview control for the tracked vehicles suspension system. We proposed a method to apply a linear optimal preview control to the tracked vehicle system. To avoid the complexity of modeling the track subsystem and kinematical nonlinearity in the trailing arm suspension, we classified these as unknown dynamics and disturbances. We used the Time Delay Control(TDC) method to make sprung mass dynamics follow that of linear preview controlled tracked vehicle model by compensating the uncertainties and disturbances. We have verified by the computer simulation that the proposed method shows good robus...

  • PDF

OPTIMAL PREVIEW CONTROL OF TRACKED VEHICLE SUSPENSION SYSTEMS

  • Youn, I.;Lee, S.;Tomizuka, M.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.469-475
    • /
    • 2006
  • In this paper, an optimal suspension system with preview of the road input is synthesized for a half tracked vehicle. The main goal of this research is to improve the ride comfort characteristics of a fast moving tracked vehicle in order to maintain the driver's driving capability. Several different kinds of preview control algorithms are evaluated with active or semi-active suspension systems. The road information estimated from the motion of the 1st road-wheel is adequate to make the best use of the preview control algorithm for tracked vehicles. The ride-comfort characteristics of the tracked vehicle are more dependent on pitching angular acceleration than heaving acceleration. The pitching motion is reduced by the suspension system with hard outer suspensions and soft inner suspensions. Simulation results show that the performance of sky-hook algorithms for ride comfort nearly follow that of full state feedback algorithms.

1/2 궤도차량에 대한 반능동 현수장치 제어 알고리즘들의 성능평가 (Performance Evaluation of Control Algorithms for 1/2 Tracked Vehicle with Semi-Active Suspension System)

  • 윤일중;임재필;신휘범;이진규;신민재
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.139-147
    • /
    • 2001
  • 2 DOF half-car model with 6 semi-active suspension units is utilized to evaluate the tracked vehicle dynamic performance simulated by several suspension control algorithms. The target of this research is to improve the ride comfort to maintain operator's handling capability when the tracked vehicle travels fast on the rough road. The control algorithms for suspension systems, such as full state feedback active, full state feedback semi-active, sky-hook active, sky-hook semi-active, and on-off systems, are evaluated and analyzed in view point of ride comfort. The dynamic performances of vehicle are expressed and evaluated by vibratory characteristic evaluation curves, performance indices and frequency characteristic curves. The simulation results show that the performances of sky-hook algorithms for ride comfort nearly follow those of full state feedback algorithms and on-off algorithm is recommendatory when the vehicle runs relatively fast.

  • PDF

Preview Control of High Mobility Tracked Vehicle Suspension

  • Kim, Yoon-Sun;Park, Young-Jin;Kwak, Byung-Hak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.174.1-174
    • /
    • 2001
  • The role of suspension system in tracked vehicles cannot be overestimated because the driving and running conditions of such vehicles are very severe. It reduces the vibration and shock which are generated by road profile in running condition. As the tracked vehicle's running speed increases, more undesired vibrations can be generated by road profile particularly in the situation of field running. Because, the excessive vibration can harm the operation ability of crewmen and stability of complex equipments, the maximum running speed is limited. In this study, to improve the performance of the tracked vehicle system, we examined the feasibility of using the active preview control for the tracked vehicle´s suspension system. First, we developed ...

  • PDF

ER 현수장치를 갖는 궤도 차량의 진동제어 (II);궤도차량의 모델링 및 제어 (Vibration Control of a Tracked Vehicle with ER Suspension Units (II);Modeling and Control of a Tracked Vehicle)

  • 박동원;최승복;강윤수;서문석;신민재;최교준
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1960-1969
    • /
    • 1999
  • This paper presents dynamic modeling and controller design of a tracked vehicle installed with the double rod type ERSU(electro-rheological suspension unit). A 16 degree-of-freedom model for the tracked vehicle is established by Lagrangian method followed by the formulation of a new sky-ground hook controller. This controller takes account for both the ride quality and the steering stability. The weighting parameter between the two performance requirements is adopted to adjust required performance characteristics with respect to the operation conditions such as road excitation. The parameter is appropriately determined by employing a fuzzy algorithm associated with the vehicle motion. Computer simulations are undertaken in order to demonstrate the effectiveness of the proposed control system. Acceleration values at the driver's seat are analyzed under bump road profile, while frequency responses of vertical acceleration are investigated under random road excitation.

궤도차량용 반능동 현수장치 성능특성에 관한 연구 (A Study on Performance Characteristics of Semi-Active Suspension System of Tracked Vehicle)

  • 김병운;이윤복;강이석
    • 한국군사과학기술학회지
    • /
    • 제6권1호
    • /
    • pp.9-20
    • /
    • 2003
  • In this study, the performance of a semi-active suspension system for heavy duty tracked vehicles has been investigated. To this end, continuous and on-off Sky-Hook control law have been evaluated for a 1/4 car model. Simulation results show that the semi-active suspension system has potential to improve ride quality of the vehicle. And we proposed a method for improving of variable damper performance.

궤도 차량 로드 휠 강도평가와 잔류 변형에 관한 연구 (A Study for Residual Deformation and Strength Evaluation on Road Wheel of a Tracked Vehicle)

  • 신국식;강성기
    • 한국기계가공학회지
    • /
    • 제10권3호
    • /
    • pp.47-52
    • /
    • 2011
  • A tracked vehicle is dependent on performance of power pack and suspension systems. Especially, road wheels which are components of suspension system contribute distributing vehicle weight on soil and preventing from misguiding tracks. In this study, the maximum force was calculated that a tracked vehicle is driven on the worst condition. And then, FE analyses were carried out to evaluate strength road wheel under maximum force condition. In standard of quality evaluation for road wheel, FE simulations and experimental works were carried out under thirty degree slant load of normal direction of shaft. And then, A relationship residual deformation for slant load was investigated. The result of this research is applicable to evaluate strength and to make use of basis data.

ER 현수장치를 갖는 궤도차량의 $H_{\infty}$ 제어 ($H_{\infty}$ Control of a Tracked Vehicle with ER Suspension Units)

  • 한상수;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.251-256
    • /
    • 2000
  • This paper presents dynamic modeling and controller design of a tracked vehicle installed with the double-rod type ERSU(electro-rheological suspension unit). A 16 DOF(degree-of-freedom) model for the tracked vehicle is established by Lagrangian method. After showing the spring and damping characteristics of the proposed ERSU, equivalent 2 DOF 1/12 tracked vehicle model is then formulated by regarding the spring and viscous damping coefficients under the static state as constant values. A robust LSDP(loop-shaping design procedure) $H_{\infty}$ controller compensating spring and damping parameter variations is then designed in order to suppress unwanted vibration of the vehicle. The control responses such as vertical and pitch acceleration are presented in time domain.

  • PDF

궤도 차량용 MR 현수장치의 최적 설계 (Optimal Design of MR Suspension Unit for Tracked Vehicle)

  • 하성훈;김형섭;최승복;우제관
    • 한국소음진동공학회논문집
    • /
    • 제21권6호
    • /
    • pp.499-505
    • /
    • 2011
  • This paper presents optimal design of controllable magnetorheological suspension unit for a tracked vehicle. As a first step, a double-rod type MR suspension unit is designed on the basis of the Bingham model of commercially available MR fluid, and its damping characteristics are evaluated with respect to the intensity of the magnetic field. Subsequently, the governing equation of motion of the MR suspension system featuring the MR valve is established. Then, the optimization problem to find optimal geometric dimensions of the MR supension unit is formulated by considering an objective function which is related to damping torque and control energy. The first order optimization method intergrated with a commercial finite element method(FEM) software is adopted to obtain optimal solution of the system. The performance characteristics of the optimized MR susepnsion unit is then evaluated and compared with initial one.