• Title/Summary/Keyword: Trackbed evaluation system

Search Result 5, Processing Time 0.021 seconds

Research for Assessing Railway Trackbed Condition (궤도하부구조의 상태 평가를 위한 연구)

  • Kim Dae-Sang;Lee Su-Hyung;Kang Seung-Goo;Son Kang-Hee
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.980-986
    • /
    • 2004
  • So far systematic and reliable methods for the investigation of track substructure (ballast and subgrade) are not developed yet. This study presents the applicability of GPR (Ground Penetrating Radar) and PBS (Portable Ballast Sampler) to the evaluation of railway trackbed conditions. Including FWD (Falling Weight Deflectometer) often used to evaluate the subsurface conditions of pavement, the standard system for assessing trackbed conditions will be developed in the future.

  • PDF

Evaluation on the Condition of Track Substructure Using GPR/PBS/LEWD (GPR/PBS/LFWD를 이용한 궤도하부 상태평가)

  • Kim Dae-Sang;Hwang Seon-Keun;Shin Min-Ho;Park Tae-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.163-170
    • /
    • 2005
  • Track substructure (ballast, subgrade) should have sufficient strength and uniform stiffness to fully support track superstructure (rail, fastener, sleeper). Vertical support stiffness of track is strongly influenced by the condition of ballast and subgrade layers. Therefore, the evaluation of the condition of track substructure is very important to evaluate the vertical support stiffness of track. This paper proposes the trackbed evaluation system, which is composed of Ground Penetrating Radar (GPR), Portable Ballast Sample. (PBS), and Light Falling Weight Deflectomete. (LFWD), to diagnose track substructure. The laboratory and field tests are performed to evaluate the applicability of the proposed trackbed evaluation system.

3D Dynamic Finite Element Analysis and Corresponding Vibration of Asphalt Track Considering Material Characteristics and Design Thickness of Asphalt Concrete Roadbed Under Moving Load (아스팔트 콘크리트 설계두께 및 재료특성을 반영한 아스팔트 콘크리트 궤도 3차원 이동하중 동적해석 및 진동특성)

  • Lee, SeongHyeok;Seo, HyunSu;Jung, WooYoung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.67-76
    • /
    • 2016
  • The asphalt-concrete trackbed system has many advantages in terms of maintenance and economics. However, methods to investigate practical use corresponding to the development of the trackbed system must be developed. The primary objective of this study was to evaluate the dynamic performance of the asphalt system in accordance with both the elastic and viscoelastic material characteristics and design thickness of the asphalt trackbed. More specifically, in order to reduce the uncertainty error of the Finite Element(FE) model, a three-dimensional full scale FE model was developed and then the infinite foundation model was considered. Finally, to compare the condition of viscoelastic materials, performance evaluation of the asphalt-concrete trackbed system was used to deal with the dynamic amplification factors; numerical results using isotropic-elastic materials in the FE analysis are presented.

Resilient Moduli of Sub-ballast and Subgrade Materials (강화노반 및 궤도하부노반 재료의 회복탄성계수)

  • Park, Chul-Soo;Choi, Chan-Yong;Choi, Choong-Lak;Mok, Young-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1042-1049
    • /
    • 2007
  • Recently, a theoretically-sound design approach, using an elastic multilayer model, is attempted in trackbed designs for the construction of high speed railways and new lines of conventional railways. In the elastic multilayer model, the stress-dependent resilient modulus($E_R$) is an important input parameter, that is, reflects substructure performance under repeated traffic loading. However, the evaluation method for resilient modulus using repeated loading triaxial test is not fully developed for practical purpose, because of costly equipment and the significantly fluctuated values depending on the testing equipment and laboratory personnel. In this study, the paper will present an indirect method to estimate the resilient modulus using dynamic properties. The resilient modulus of crushed stone, which is the typical material of sub-ballast, was calculated with the measured dynamic properties and the range of stress level of the sub-ballast, and approximated with the power model combined with bulk and deviatoric stresses. The resilient modulus of coarse grained material decreases with increasing deviatoric stress at a confining pressure, and increases with increasing bulk stress. Sandy soil(SM classified from Unified Soil Classification System) of subgrade was also evaluated and best fitted with the power model of deviatoric stress only.

  • PDF

Resilient Moduli of Sub-ballast and Subgrade Materials (강화노반 및 궤도하부노반 재료의 회복탄성계수)

  • Park, Chul-Soo;Choi, Chan-Yong;Choi, Choong-Lak;Mok, Young-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.54-60
    • /
    • 2008
  • In the trackbed design using elastic multilayer model, the stress-dependent resilient modulus $(E_R)$ is an important input parameter, that is, reflects substructure performance under repeated traffic loading. However, the evaluation method for resilient modulus using repeated loading triaxial test is not fully developed for practical purpose, because of costly equipment and the significantly fluctuated values depending on the testing equipment and laboratory personnel. The this study, the paper will present an indirect method to estimate the resilient modulus using dynamic properties. The resilient modulus of crushed stone, which is the typical material of sub-ballast, was calculated with the measured dynamic properties and the range of stress level of the sub-ballast, and approximated with the power model combined with bulk and deviatoric stresses. The resilient modulus of coarse grained material decreases with increasing deviatoric stress at a confining pressure, and increases with increasing bulk stress. Sandy soil (SM classified from Unified Soil Classification System) of subgrade was also evaluated and best fitted with the power model of deviatoric stress only.