• Title/Summary/Keyword: Track Structure

Search Result 562, Processing Time 0.03 seconds

A Study on Image Segmentation and Tracking based on Intelligent Method (지능기법을 이용한 영상분활 및 물체추적에 관한 연구)

  • Lee, Min-Jung;Hwang, Gi-Hyun;Kim, Jeong-Yoon;Jin, Tae-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.311-312
    • /
    • 2007
  • This dissertation proposes a global search and a local search method to track the object in real-time. The global search recognizes a target object among the candidate objects through the entire image search, and the local search recognizes and track only the target object through the block search. This dissertation uses the object color and feature information to achieve fast object recognition. Finally we conducted an experiment for the object tracking system based on a pan/tilt structure.

  • PDF

Using the Turnout Reinforced Concrete Sleeper on Slab Track (콘크리트 도상 분기 침목의 R.C 침목화)

  • 이상진;김기훈;신순호;이인세
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.633-641
    • /
    • 2002
  • Wooden-sleeper, which has been adopted as railway turnout in Korea, has created many problems such as short life span and increase of maintenance cost. Especially turnout on Maintenance Free slab track, which has been used in city metro, has been constructed with wooden sleeper buried in concrete roadbed due to complexity of structure. However, such problem as rapid erosion in subground makes it difficult to maintain the sleeper because of frequent replacement required. Therefore, the objective of this paper is to introduce design and construction of reinforced concrete(R.C) sleeper for turnout on the concrete roadbed to facilitate maintainability and economic construction of turnout.

  • PDF

Dynamic Response for Critical Velocity Effect Depending on Supporting Stiffness of High-Speed Railway Trackbed (고속철도 노반지지조건에 따른 임계속도효과의 동적응답)

  • Lee, Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.5-12
    • /
    • 2013
  • The critical velocity effect on railway trackbed means the amplification of vibration energy when the train running-speed and group velocity of ground surface wave are superimposed. It is called a pseudo-resonance phenomenon of time domain. In the past, it was not issued because the train speed was low and the ground group velocity was higher. But since the high-speed train is introduced, critical velocity reported causing a track irregularity. So far, theoretical analysis has been performed because of the complexity of formation process. However it requires reasonable consideration which is similar to actual track and trackbed conditions. In the present paper, finite element analysis to verify the critical velocity effect is performed considering each track structure and trackbed supporting stiffness. As a result, the deformation amplification caused by the critical velocity effect is verified to analyze each supporting stiffness and track system.

A Study on the Compaction Characteristics of Crushed Rock-soil Mixture for Railway Subgrade (암버럭-토사 혼합성토재 철도노반의 다짐특성 연구)

  • Kim, Dae-Sang;Park, Seong-Yong;Song, Jong-Woo;Kim, Soo-Il;Song, Jae-Joon
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.183-189
    • /
    • 2009
  • The track structure of Gyungbu High Speed Railway line from Daegu to Busan is concrete track. It has a very strict specification for residual settlement because of its rigid type structural characteristics. The residual settlement of it comes from the residual settlement of the subgrade and the ground. The residual settlement of railway subgrade composed of crushed rock and soil might be major parts of total residual settlement depending on the field compaction qualities. Therefore, it is a key to minimize the residual settlement of the subgrade for a successful concrete track construction. In this paper, total 31 large scale compaction tests were performed to understand the compaction behaviors of the crushed rock-soil mixture. The test specimens were constituted with soil, crushed shale and mudstone taken from two sites under construction. The compaction tests were performed with the variations of rock types, #4 sieve passing contents, maximum particle size, and moisture contents. The influence of those factors on maximum dry unit weights of crushed rock-soil mixture was evaluated.

Study on the transient flow induced by the windbreak transition regions in a railway subject to crosswinds

  • Zheng-Wei, Chen;Syeda Anam, Hashmi;Tang-Hong, Liu;Wen-Hui, Li;Zhuang, Sun;Dong-Run, Liu;Hassan, Hemida;Hong-Kang, Liu
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.309-322
    • /
    • 2022
  • Due to the complex terrain around high-speed railways, the windbreaks were established along different landforms, resulting in irregular windbreak transition regions between different subgrade infrastructures (flat ground, cutting, embankment, etc). In this paper, the effect of a windbreak transition on the wind flow around railways subjected to crosswinds was studied. Wind tunnel testing was conducted to study the wind speed change around a windbreak transition on flat ground with a uniform wind speed inflow, and the collected data were used to validate a numerical simulation based on a detached eddy simulation method. The validated numerical method was then used to investigate the effect of the windbreak transition from the flat ground to cutting (the "cutting" is a railway subgrade type formed by digging down from the original ground) for three different wind incidence angles of 90°, 75°, and 105°. The deterioration mechanism of the flow fields and the reasons behind the occurrence of the peak wind velocities were explained in detail. The results showed that for the windbreak transition on flat ground, the impact was small. For the transition from the flat ground to the cutting, the influence was relatively large. The significant increase in the wind speeds was due to the right-angle structure of the windbreak transition, which resulted in sudden changes of the wind velocity as well as the direction. In addition, the height mismatch in the transition region worsened the protective effect of a typical windbreak.

Behavior of Concrete Track Girder for Magnetic Levitation Train (자기부상열차구조물에 있어서 콘크리트선로거더의 거동)

  • Kang Bo-Soon
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.686-691
    • /
    • 2005
  • State of the art and current issues related with the RC and PSC structure system for the magnetic levitation train were investigated. The German and China magnetic levitation train adopted a new kind of a structure to enable high-speed transportation, which allows the use of the space over a ground. The loading from magnetic levitation trains is light-weight compared with a regular train due to load distribution to a supporting structure. Therefore, the magnetic levitation train is considered an economical and efficient transportation system, and is also an environmentally-sustainable structure. In this paper, the structural design and construction technology specific to a magnetic levitation train were discussed, and structural considerations related with an actual operation of the train were pointed out. In addition, the future research area of a magnetic levitation train was proposed

  • PDF

A study on structure analysis and material improvement lightweight of special-purpose vehicles axle (특수차량용 엑슬의 경량화를 위한 구조해석과 소재 개선에 관한 연구)

  • Lee, Jung-hwa;Kwon, Hui-june;Kang, Jung-ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.136-142
    • /
    • 2009
  • The vehicle's light-weight technology is divided into optimization of structure geometric and material. Structure geometric optimization and improvement of materials has examined to be power-train and maintenance on the severe condition. The core technology of Special vehicle's light-weight is constitute by Drop box, Axle and Final reduction gear. Technology and product of the parts is high to overseas and import dependency. We will want to examine the possibility of light-weight for the Axle Case and Drop box-connections. In this research, conventional design of excess weight will inhibit the mobility and fuel efficiency. Through the improvement of Axle material, we saw the possibility reducing weight. If you use the results of these studies, it will be available to domestic production technology and reducing weight of RV car, Dump truck, Track crain, etc.

  • PDF

Design of Fuzzy Observer for Nonlinear System using Dynamic Rule Insertion (비선형 시스템에 대한 동적인 규칙 삽입을 이용한 퍼지 관측기 설계)

  • Seo, Ho-Joon;Park, Jang-Hyun;Seo, Sam-Jun;Kim, Dong-Sik;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2308-2310
    • /
    • 2001
  • In the adaptive fuzzy sliding mode control, from a set of a fuzzy IF-THEN rules adaptive fuzzy sliding mode control whose parameters are adjusted on-line according to some adaptation laws is constructed for the purpose of controlling the plant to track a desired trajectory. Most of the research works in nonlinear controller design using fuzzy systems consider the affine system with fixed grid-rule structure based on system state availability. The fixed grid-rule structure makes the order of the controller big unnecessarily, hence the on-line fuzzy rule structure and fuzzy observer based adaptive fuzzy sliding mode controller is proposed to solve system state availability problems. Therefore, adaptive laws of fuzzy parameters for state observer and fuzzy rule structure are established implying whole system stability in the sense of Lyapunov.

  • PDF

The Effect and Countermeasures of the Vertical Track Settlement Caused by Expand and Contract Behavior of the High-Speed Railway Bridge Girder (고속철도 교량 바닥판의 온도신축작용이 궤도처짐에 미치는 영향과 대책에 관한 연구)

  • Kang, Kee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.673-679
    • /
    • 2005
  • According to continuous welded rails on a bridge, temperature changes bring about the expansion of the bridge deck,adding axial forces on the track. Moreover, the ballast on the bridge deck expansion joint is moved due to the bridge deck. The longer the bridge deck is, the greater the influence will be, loosening the ballast, causing track irregularities, and deteriorating passenger comfort. Considering the structure of the bridge itself and tolerance for track irregularities caused by the loosened ballast on the bridge, the maximum length of the deck should be less than 80 m, which is the same as the standard of French railways. In this study, the interaction between the expansion related to the bridge length and the irregularity in the longitudinal level, referring to measurements and maintenance work performed in high-speed railways, was analyzed. This research shows that the installation of a sliding plate or a vertical ballast stopper is not a good option, since it is difficult. On the other hand, the installation of a ZLR fastener or gluing is easy, but its influence is insignificant. In conclusion, switch tie tamping or manual tamping is more effective than other methods of what?

Estimation Method of Resilience Pads Spring Stiffness for Sleeper Floating Tracks based on Track Vibration (궤도 진동기반의 침목플로팅궤도 침목방진패드 스프링강성 추정 기법 연구)

  • Jung-Youl Choi;Sang-Wook Park;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1057-1063
    • /
    • 2023
  • The urban railway sleeper floating track, the subject of this study, is an anti-vibration track to reduce vibration transmitted to the structure. currently, the replacement cycle of resilience pad for sleeper floating tracks is set and operated based on load. however, most previous studies were conducted on load-based structural safety aspects, such as fatigue life evaluation of sleeper anti-vibration pads and increase in track impact coefficient and track support stiffness due to increase in spring stiffness. therefore, in this study, we measure the vibration acceleration of the ballast for each analysis section and use the results of 7 million fatigue tests to calculate the spring stiffness of the resilience pad for each section. the spring stiffness of the resilience pad calculated for each section was set as the analysis data and the concrete vibration acceleration was derived analytically. the adequacy of analysis modeling was verified as the analyzed concrete bed vibration acceleration for each section was within the field-measured concrete bed vibration acceleration range. using the vibration acceleration curve according to the derived spring stiffness change, the spring stiffness of the resilience pad is estimated from the measured vibration acceleration. therefore, we would like to present a technique that can estimate the spring stiffness of resilience pad of a running track using the vibration acceleration of the measured concrete bed.