• Title/Summary/Keyword: Track Defects

Search Result 55, Processing Time 0.026 seconds

Investigation of the Maintenance Criteria for the Rail Surface Defects in High-Speed Railways (고속철도 레일 표면 결함 관리기준에 관한 연구)

  • Yang, Sin-Chu;Jang, Seung-Yup
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.6
    • /
    • pp.535-544
    • /
    • 2011
  • The rail surface defects can cause the high impact load on the track and lead to the progress of the rail fatigue damage and the rail break. In case of the rail break, there is a great deal of risk for derailment, and thus the maintenance criteria for the rail surface defects are of great importance. In this study, using the dynamic train-track interaction analysis program, the impact wheel loads and rail bending stresses according to the depths of the surface defects have been calculated with the input data of the rail surface irregularities measured at 43 spots with surface defects in the ballasted track of high-speed railway. Considering the irregularity of track geometry, the allowable limits of wheel load and rail bending stress have been set, and the maintenance criteria for the rail surface defects was suggested by analyzing the relationship of the maximum values of wheel load and rail bending stress versus depth and width of rail surface defect. The analysis results suggest that the allowable depth of the surface defect is determined approximately 0.2mm from the limit of the impact wheel load.

Study on MFL Technology for Defect Detection of Railroad Track Under Speed-up Condition (증속에 따른 누설자속기반 철도레일 결함탐상 기술 적용성 검토)

  • Kang, Donghoon;Oh, Ji-Taek;Kim, Ju-Won;Park, Seunghee
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.5
    • /
    • pp.401-409
    • /
    • 2015
  • Defects generated in a railroad track that guides the railroad vehicle have the characteristic of growing fast; as such, the detection technology for railroad track defects is very important because defects can eventually cause mass disasters like derailments. In this study, a speed-up test facility was fabricated to investigate the feasibility of using magnetic flux leakage (MFL) technology for defect detection in a railroad track under speed-up condition; a test was conducted using a railroad track specimen with defects. For this purpose, an MFL sensor head dedicated to the configuration of the railroad was designed and test specimens with artificial defects on their surfaces were manufactured. Using the test facility, a speed-up test ranging from 4km/h to 12km/h was performed and defects including locations were successfully detected from MFL signals induced by defects with enhanced visibility by differentiating raw MFL signals. In the future, it should be possible to apply this system to a high-speed railroad inspection car by improving the lift-off stability that is necessary for speed-up of the developed MFL sensor system.

Wheel tread defect detection for high-speed trains using FBG-based online monitoring techniques

  • Liu, Xiao-Zhou;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.687-694
    • /
    • 2018
  • The problem of wheel tread defects has become a major challenge for the health management of high-speed rail as a wheel defect with small radius deviation may suffice to give rise to severe damage on both the train bogie components and the track structure when a train runs at high speeds. It is thus highly desirable to detect the defects soon after their occurrences and then conduct wheel turning for the defective wheelsets. Online wheel condition monitoring using wheel impact load detector (WILD) can be an effective solution, since it can assess the wheel condition and detect potential defects during train passage. This study aims to develop an FBG-based track-side wheel condition monitoring method for the detection of wheel tread defects. The track-side sensing system uses two FBG strain gauge arrays mounted on the rail foot, measuring the dynamic strains of the paired rails excited by passing wheelsets. Each FBG array has a length of about 3 m, slightly longer than the wheel circumference to ensure a full coverage for the detection of any potential defect on the tread. A defect detection algorithm is developed for using the online-monitored rail responses to identify the potential wheel tread defects. This algorithm consists of three steps: 1) strain data pre-processing by using a data smoothing technique to remove the trends; 2) diagnosis of novel responses by outlier analysis for the normalized data; and 3) local defect identification by a refined analysis on the novel responses extracted in Step 2. To verify the proposed method, a field test was conducted using a test train incorporating defective wheels. The train ran at different speeds on an instrumented track with the purpose of wheel condition monitoring. By using the proposed method to process the monitoring data, all the defects were identified and the results agreed well with those from the static inspection of the wheelsets in the depot. A comparison is also drawn for the detection accuracy under different running speeds of the test train, and the results show that the proposed method can achieve a satisfactory accuracy in wheel defect detection when the train runs at a speed higher than 30 kph. Some minor defects with a depth of 0.05 mm~0.06 mm are also successfully detected.

Analysis of Railroad Accidents due to Track Defects in Foreign Countries (궤도 결함에 기인한 국외의 철도사고 분석)

  • Lim, Nam-Hyoung;Lee, Woo-Chul;Choi, Jin-Yu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • The railway system is worldwide recognized as a safe mean of transportation. However, railroad accidents and incidents continue to occur. Due to the nature of the railway system that consist of many mechanical parties, it is apparently difficult to eliminate probability of accidents and incidents completely. Therefore, through the analysis of railroad accidents and incidents, it is very important to trace the various factors affecting the accidents and incidents. In this study, we performed the analysis of rail-road accidents due to track defects in foreign countries; United States of America, England, Canada, Australia. As a result of its investigation of the accidents, major risk factors are proposed in this study.

Study on the Establishment of Rail Grinding Criteria of High-Speed Railway Lines Considering the KTX Operation Circumstances (KTX 운행현황을 고려한 고속선 레일 연마 기준 정립에 대한 연구)

  • Kim, Man-Cheol;Kang, Tae-Ku
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.377-385
    • /
    • 2007
  • The importance of maintenance of rail surface defects is increasing more according to the KTX operation. That is because during high speed operation of rolling stock, rail surface defects may cause shortened fatigue life of rail, acceleration of track degradation and reduced ride comfort. The paper was intended to study the establishment of rail grinding criteria of high-speed railway lines considering the KTX operation circumstances. For this, the specimens of UIC 60 rail on Kyeong-Bu high-speed operation lines were collected and they were analyzed for metallographic structure and tested for the hardness. By analyzing the test results to the factors affecting the RCF causing the defects of rail surface, the study suggested the rail grinding criteria of the domestic high speed railway lines. As the factors affecting RCF, passing tonnage, running speed and track condition are considered.

  • PDF

A Study of the Long Wave Track Defect Analysis for High Speed Railway (고속철도의 장파장 제도틀림 분석에 대한 연구)

  • Kang Kee-Dong
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.111-115
    • /
    • 2005
  • The Study provides the technical background and calculation method f3r the long wave track defect. On high speed railway, It is necessary to manage the long wave band up to 80m track defect fur improving a riding quality. For this reason, Track recording methods for highspeed railway are used 10m and 30m recording bases, these are covered middle wave band and long wave band successfully. Extended base recording data is calculated by geometrical model and this data provides a good result for KTX riding index.

Rail Grinding Criteria of Kyeong-Bu High-Speed Line for Effective Rail Maintenance (레일유지관리 효율화를 위한 경부 고속선 레일 연마 기준(안))

  • Kim, Man-Cheol;Kang, Tae-Ku
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.272-279
    • /
    • 2008
  • The importance of maintenance of rail surface defects is increasing more according to the KTX operation. That is because during high speed operation of rolling stock, rail surface defects may cause shortened fatigue life of rail, acceleration of track degradation and reduced ride comfort. The paper was intended to study the establishment of rail grinding criteria of high-speed railway lines considering the KTX operation circumstances. For this, the specimens of UIC 60 rail on Kyeong-Bu high-speed operation lines were collected and they were tested for metallographic structure and measured for the hardness. As the factors affecting RCF causing the defects of rail surface, passing tonnage, running speed and track condition are considered.

Development of a defect analysis and control system based on CMMI (CMMI 기반의 결함 분석 및 통제 시스템 개발)

  • Cho, Sung-Min;Han, Hyuk-Soo
    • Journal of Internet Computing and Services
    • /
    • v.8 no.2
    • /
    • pp.15-22
    • /
    • 2007
  • As we detect defects and eliminate them in early stages, we can make better quality software. For doing this task, we need to use a defect tracking system which con effectively track and manage defects that give severe effects on software quality. Those existing defect tracking systems have some weaknesses as we apply them to organizations that use CMMI for process improvements. Major problems of those systems are that they require the organizations to collect many types of defect data at a time without providing the proper explanation and even without the support of defect management process. The organizations at CMMI maturity level 2 and 3 have problems for analyzing those defects because there is no specific process area at CMMI maturity level 2 and 3 which directly handles defect managing activites. This paper resolves those problems by developing a defect tracking system which offers methods of managing defects. And the system provides guidelines of which defects should be gathered for each CMMI mathurity levels. The system also has functions to generate various status and statistic information on defects, and to assign defect data to the person in charge so that he or she track the defect to the closure

  • PDF

Correlation Analysis of Rail Surface Defects and Rail Internal Cracks (레일표면결함과 레일내부균열의 상관관계 분석)

  • Jung-Youl Choi;Jae-Min Han;Young-Ki Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.585-590
    • /
    • 2024
  • In this study, rail surface defects are increasing due to the aging of urban railway rails, but in the detailed guidelines for track performance evaluation established by the country, rail surface damage is inspected with the naked eye of engineers and simple measuring tools. With the recent enactment of the Track Diagnosis Act, a large budget has been invested and the volume of rail diagnosis is rapidly increasing, but it is difficult to secure the reliability of diagnosis results using labor-intensive visual inspection techniques. It is very important to discover defects in the rail surface through periodic track tours and visual inspection. However, evaluating the severity of defects on the rail surface based on the subjective judgment of the inspector has significant limitations in predicting damage inside the rail. In this study, the rail internal crack characteristics due to rail surface damage were studied. In field measurements, rail surface damage locations were selected, samples of various damage types were collected, and the rail surface damage status was evaluated. In indoor testing, we intend to analyze the correlation between rail surface defects and internal defects using a electron scanning microscope (SEM). To determine the crack growth rate of urban railway rails currently in use, the Gaussian probability density function was applied and analyzed.

A Study on the Contact Power by Coating Material of Spray in AT Feeding Method (AT급전방식에서 코팅재에 의한 접촉전력에 대한 연구)

  • Kim, Min-Seok;Kim, Min-Kyu;Park, Yong-Gul;Lee, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.85-92
    • /
    • 2011
  • Main characteristic in railroad is the guided movement of the wheel by the track through a metal-to-metal contact, conferring to the rail vehicle a single degree of freedom. There are defects such as head check, shelling, corrugation, squats etc in surface of the rail by interface between the wheel and rail. These defects bring about reducing the life-cycle of rails and track components and increasing noises. In case of bad conditions, it is possible to happen to full-scale accident such as derailment. Recently, the track capacity has been increased for increasing speed and operation efficiency. So, maintenance and indirect cost have been increased. Currently, a coating method of rail construction is proposed by using the ceramics in Korea. Rails are used as the earth in electrical railroad systems. Currently traction return current is flowed through wheels of trains. In case of rails coated, problems are caused in the contact power between wheel and coating material of spray. In this paper, electric model is presented in the AT feeding method. In case of rails coated, electric model is presented. Also, standard resistance of the ceramic is demonstrated by contact power between wheel and coating material of spray.