• Title/Summary/Keyword: Trace element deficiency

Search Result 11, Processing Time 0.028 seconds

Trace Element Deficiency in Children Receiving Total Parenteral Nutrition (TPN) (총정맥영양(TPN)과 관련된 미량원소의 결핍)

  • Lee, Jung Hwa
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.11 no.sup1
    • /
    • pp.117-126
    • /
    • 2008
  • Trace elements compose a very small portion of the body, however they have a variety of essential functions. Various diseases are caused by trace element deficiencies, and sometimes they can be fatal. Long-term TPN is a risk factor of trace element deficiency, and trace elements need to be checked regularly while receiving TPN. It is important to provide sufficient requirements of trace elements regarding the clinical features and the problems of trace element excess or deficiency. Moreover extensive studies to establish the efficiency of examining human hair and nails, recent method to determine the trace elements, are required.

  • PDF

Trace Elements Deficiency and the Diagnostic Usefulness of Hair Mineral Analysis in Children with Chronic Gastrointestinal Disease (만성 소화기 질환 환아에서 미량원소 결핍과 모발 검사의 유용성)

  • Hong, Jea-Na;Lee, Jung-Hwa;Lee, Ran;Shin, Jee-Youn;Ko, Jae-Sung;Seo, Jeong-Kee
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.11 no.2
    • /
    • pp.122-129
    • /
    • 2008
  • Purpose: Patients with chronic gastrointestinal disease are at risk for trace element deficiency due to impaired absorption and gastrointestinal loss. The aim of this study was to evaluate the trace element status of patients with gastrointestinal disease by blood and hair analysis, and to determine the usefulness of hair mineral analysis for diagnosing trace element deficiency not detected by a blood test. Methods: An analysis of hair minerals was performed and compared with blood mineral analysis in 13 patients with chronic gastrointestinal disease. The concentration of each element in the hair and blood was compared in the subgroups based on parenteral nutritional support or clinical symptoms. Results: Almost all patients had trace element deficiency. The trace elements deficient in the blood or hair analysis included zinc, selenium and copper. The hair zinc concentration was significantly lower in the group receiving parenteral nutritional support. The hair selenium concentration was statistically associated with the clinical symptoms of hair loss, brittle hair and loss of hair pigmentation. Conclusion: The results of this study suggest that patients with chronic gastrointestinal disease should receive adequate zinc and selenium replacement to avoid trace element deficiency especially when treated with long-term parenteral nutrition. Hair mineral analysis is useful as a complementary tool for the detection of a trace element deficiency.

  • PDF

Therapeutical Effect with Trace Elements in Herbal Medicine (한약재내의 미량원소의 의의와 치료효과에 대한 고찰)

  • Park Hae-Mo;Lee Sun-Dong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.4 no.2
    • /
    • pp.25-56
    • /
    • 2000
  • Trace element are involved in enzymatic activities, immunological reactions. physiological mechanisms. Deficiency in some trace elements, such as iron and iodine. is still an important health problem, The role of trace elements deficiency is suspected in various clinical situations and is now confirmed by well designed supplementation studies. However, the importance of trace elements as chinese herbal constituents is not sufficiently appreciated by the oriental medical profession, although in recent years a significant increase of new finding on their essential character in chinese herbal medicine occurred. It is well known that herbal medicine contains a variety of trace elements which would show therapeutic effects with active components in herbal medicine . In china, recent work showed some positive correlation between trace element and traditional chinese medicine (TCM) in terms of therapeutic effects even if their role in therapeutic effects is still obscure. In korea, not much attention has been on the therapeutic importance of trace element contained in herbal medicine Here, the therapeutic effects of trace element in TCM were reviewed and summarized. 1. Iron, copper, zinc and manganese are mainly contained in TCM. In addtion, chromium, magnesium, molybdenum, nickel, alminium, cobalt, arsenic and selenium has been studied for their therapeutic effects 2. Zinc, is decreased in patients who have deficiency of kindney(腎虛) and chronic disease. Fe is decreased in patients who have deficiency of blood(血虛). However copper is increased in patients who have chronic disease and hepatic disease.3 Iron concentration is high in herbs used for tonifying and nourishing yin or blood(補陰補血藥) Zinc concentration is high also in herb used for tonifying kidiney and vital essence(補腎補精藥). In addition. copper concentration Is high in herb used for replenishing qi(補氣藥) 4 In herbal drugs, the therapeutic substances in TCM are not only organic but also inorganic. It seems that trace elements would be one of components in herb for its therapeutic effects. This indicates that therapeutic effects of TCM should be extended not only to herb itself, bur also to trace elements contained in herb.

  • PDF

Cellular zinc deficiency inhibits the mineralized nodule formation and downregulates bone-specific gene expression in osteoblastic MC3T3-E1 cells

  • Cho, Young-Eun;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • v.51 no.5
    • /
    • pp.379-385
    • /
    • 2018
  • Purpose: Zinc (Zn) is an essential trace element for bone mineralization and osteoblast function. We examined the effects of Zn deficiency on osteoblast differentiation and mineralization in MC3T3-E1 cells. Methods: Osteoblastic MC3T3-E1 cells were cultured at concentration of 1 to $15{\mu}M$ $ZnCl_2$ (Zn- or Zn+) for 5, 15 and 25 days up to the calcification period. Extracellular matrix mineralization was detected by staining Ca and P deposits using Alizarin Red and von Kossa stain respectively, and alkaline phosphatase (ALP) activity was detected by ALP staining and colorimetric method. Results: Extracellular matrix mineralization was decreased in Zn deficiency over 5, 15, and 25 days. Similarly, staining of ALP activity as the sign of an osteoblast differentiation, was also decreased by Zn deficiency over the same period. Interestingly, the gene expression of bone-related markers (ALP, PTHR; parathyroid hormone receptor, OPN; osteopontin, OC; osteocalcin and COLI; collagen type I), and bone-specific transcription factor Runx2 were downregulated by Zn deficiency for 5 or 15 days, however, this was restored at 25 days. Conclusion: Our data suggests that Zn deficiency inhibits osteoblast differentiation by retarding bone marker gene expression and also inhibits bone mineralization by decreasing Ca/P deposition as well as ALP activity.

CsX+ SNMS의 Matrix Effect 감소연구

  • 문환구;김동원;한철현;김영남;심태언
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1992.02a
    • /
    • pp.17-18
    • /
    • 1992
  • SIMS is an indispensable surface analysis instrument in trace element depth p profiling because of high detection sensitivity and excellent depth r resolution, however, it requires standard sample to do quantitative analysis d due to matrix effect depending on the species of impurities and sample m matricies and on the sputtering rates. A Among the SNMS technology developed to supply the deficiency, we researched i into CsX+ SNMS which improved the resul t quanti tati vely wi thout any extra epuipments. So basic SNMS functions were confirmed through matrix element composition rate a analysis using Si02 layer etc. and adaptability to trace element c concentration analysis was tried. For that purpose we compared SIMS depth profile data for Boron which presented s strong matrix effect on account of Fluorin existence after BF2 ion implantation on silicon substrate with SNMS data. d dynamic range were investigated. A After these experements we concluded that CsX+ SNMS reduced matrix effect and we could apply it to profile impurity elements.

  • PDF

Research of Matrix Effect Reduction of $CsX^+$ SNMS ($CsX^+$ SNMS의 Matrix Effect 감소연구)

  • 문환구;김동원;한철현;김영남;심태언
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.115-120
    • /
    • 1992
  • SIMS is an indispensable surface analysis instrument in trace element depth profiling because of high detection sensitivity and excellent depth resolution, however, it requires a standard sample to do quantitative analysis due to matrix effect depending on the species of impurities and sample matricies and on the sputtering rates. Among the SNMS technology developed to supply the deficiency, we researched into CsX+ SNMS which improved the result quantitatively without any extra epuipments. So basic SNMS functions were confirmed through matrix element composition rate analysis using Siq layer etc., and adaptability to trace element concentration alaysis was tried. For that purpose we compared SIMS depth profile data for Boron which presented strong matrix effect on account of Fluorin existence after BF2 ion implantation on silicon substrate with SNMS data. Also detection limit and dynamic range were investigated. After these experements we concluded that CsX+ SNMS reduced matrix effect and we could apply it to profile impurity elements.

  • PDF

Biological Aspects of Selenium in Farm Animals

  • Kim, Y.Y.;Mahan, D.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.435-444
    • /
    • 2003
  • In 1957, Schwarz and Foltz discovered that selenium (Se) was an essential trace mineral and nutritionists then started extensive studies to figure out the metabolic function of this element which has been called as toxic mineral. The discovery that glutathione peroxidase (GSH-Px) contained Se demonstrated a biochemical role for Se as an essential trace element. The major physiological function of Se containing GSH-Px is thought to maintain low levels of $H_2O_2$ and other hydroperoxides in the cell to prevent tissues from peroxidation damages. It is known that the GSH-Px activity is increased when animals were fed high dietary levels of Se. Chemical properties of Se have much in common with sulfur (S) therefore Se would follow the sulfur pathways in its metabolism in animal body. Two sources of Se are available for supplementation of Se in animal feed. Inorganic Se can also exist in selenide (-2), elemental (0), selenite (+4) and selenate (+6) oxidation state with other minerals. When sulfur in S containing amino acids is replaced by Se, organic Se can be made and named "eleno"prior to the name of S containing amino acid, i.e. selenomethionine. Selenium deficiency affects humans as well as animals and dysfunctions such as exudative diathesis, retained placenta, mastitis, liver necrosis, Keshan disease, numerous diseases and cancer. From several centuries ago, Se toxicity was recognized in various animal species and much of the current toxic Se levels has been established largely based upon the controlled toxicity studies used inorganic Se. Toxic effects of Se in animal result in reduced feed intake, growth retardation, ataxia, diarrhea, alopecia and sloughing of hooves. However, several experiments demonstrated that Se deficiencies or toxicities were varied by dietary Se levels and sources. Recent studies demonstrated that the incidence of colorectal and prostate cancer was reduced by approximately 50% when humans consumed 200 ${\mu}g$ of Se daily.

Zinc and Zinc Related Enzymes in Precancerous and Cancerous Tissue in the Colon of Dimethyl Hydrazine Treated Rats

  • Christudoss, Pamela;Selvakumar, R.;Pulimood, Anna B.;Fleming, Jude Joseph;Mathew, George
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.487-492
    • /
    • 2012
  • Trace element zinc deficiency or excess is implicated in the development or progression of some cancers. The exact role of zinc in the etiology of colon cancer is unclear. To cast light on this question, an experimental model of colon carcinogenesis was applied here. Six week old rats were given sub cutaneous injections of DMH (30 mg/kg body weight) twice a week for three months and sacrificed after 4 months (precancer model) and 6 months (cancer model). Plasma zinc levels showed a significant decrease (p<0.05) at 4 months and a greater significant decrease at 6 months (p<0.01) as compared with controls. In the large intestine there was a significant decrease in tissue zinc levels (p<0.005) and in CuZnSOD, and alkaline phosphatase activity (p<0.05) in the pre-cancerous model and a greater significant decrease in tissue zinc (p<0.0001), and in CuZnSOD and alkaline phosphatase activity (p<0.001), in the carcinoma model. The tissue zinc levels showed a significant decrease in the small intestine and stomach (p<0.005) and in liver (p<0.05) in the cancer model. 87% of the rats in the precancer group and 92% rats in the cancer group showed histological evidence of precancerous lesions and carcinomas respectively in the colon mucosa. This study suggests that the decrease in plasma zinc, tissue zinc and activity of zinc related enzymes are associated with the development of preneoplastic lesions and these biochemical parameters further decrease with progression to carcinoma in the colon.

The Effect of Systemic Iron Level on the Transport and Distribution of Copper to the Brain (체내 철 수준이 뇌로의 구리 이동과 분포에 미치는 영향)

  • Choi, Jae-Hyuck;Park, Jung-Duck;Choi, Byung-Sun
    • Toxicological Research
    • /
    • v.23 no.3
    • /
    • pp.279-287
    • /
    • 2007
  • Copper (Cu) is an essential trace element indispensable for brain development and function; either excess or deficiency in Cu can cause brain malfunction. While it is known that Cu and Fe homeostasis are strictly regulated in the brain, the question as to how systemic Fe status may influence brain Cu distribution was poorly understood. This study was designed to test the hypothesis that dietary Fe condition affects Cu transport into the brain, leading to an altered brain distribution of Cu. Rats were divided into 3 groups; an Fe-deficient (Fe-D) group which received an Fe-D diet ($3{\sim}5 mg$ Fe/kg), a control group that was fed with normal diet (35mg Fe/kg), and an Fe-overload group whose diet contained an Fe-O diet (20g carbonyl Fe/kg). Following a 4-week treatment, the concentration of Cu/Fe in serum, CSF (cerebrospinal fluid) and brain were determined by AAS, and the uptake rates of Cu into choroids plexus (CP), CSF, brain capillary and parenchyma were determined by an in situ brain perfusion, followed by capillary depletion. In Fe-D and Fe-O, serum Fe level decreased by 91% (p<0.01) and increased by 131% (p<0.01), respectively, in comparison to controls. Fe concentrations in all brain regions tested (frontal cortex, striatum, hippocampus, mid brain, and cerebellum) were lower than those of controls in Fe-D rats (p<0.05), but not changed in Fe-O rats. In Fe-D animals, serum and CSF Cu were not affected, while brain Cu levels in all tested regions (frontal cortex, striatum, hippocampus, mid brain, and cerebellum) were significantly increased (p<0.05). Likewise, the unidirectional transport rate constants $(K_{in})$ of Cu in CP, CSF, brain capillary and parenchyma were significantly increased (p<0.05) in the Fe-D rats. In contrast, with Fe-O, serum, CSF and brain Cu concentrations were significantly decreased as compared to controls (p<0.05). Cu transport was no significant change of Cu transport of serum in Fe-O rats. The mRNA levels of five Cu-related transporters were not affected by Fe status except DMT1 in the CP, which was increased in Fe-D and decreased in Fe-O. Our data suggest that Cu transport into brain and ensuing brain Cu levels are regulated by systemic Fe status. Fe deficiency appears to augment Cu transport by brain barriers, leading to an accumulation of Cu in brain parenchyma.

Fe-doped beta-tricalcium phosphate; crystal structure and biodegradable behavior with various heating temperature (Fe 이온 치환 beta-tricalcium phosphate의 하소 온도에 따른 미세구조 및 분해 특성)

  • Yoo, Kyung-Hyeon;Kim, Hyeonjin;Sun, Woo Gyeong;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.244-250
    • /
    • 2020
  • β-Tricalcium phosphate (β-TCP, Ca3(PO4)2) is a kind of biodegradable calcium phosphate ceramics with chemical and mineral compositions similar to those of bone. It is a potential candidate for bone repair surgery. To improve the bioactivity and osteoinductivity of β-TCP, various ions doped calcium phosphate have been studied. Among them, Iron is a trace element and its deficiency in the human body causes various problems. In this study, we investigated the effect of Fe ions on the structural variation, degradation behavior of β-TCP. Fe-doped β-TCP powders were synthesized by the coprecipitation method, and the heat treatment temperature was set at 925 and 1100℃. The structural analysis was carried out by Rietveld refinement using the X-ray diffraction results. Fe ions existed in a different state (Fe2+ or Fe3+) with different heat treatment temperatures, and the substitution sites (Ca-(4) and Ca-(5)) also changed with temperature. The degradation rate was fastest at Fe-doped β-TCP with heated at 1100℃. The cell viability behavior was also enhanced with the substitution of Fe ions. Therefore, the substitution of Fe ion has accelerated the degradation of β-TCP and improved the biocompatibility. It could be more utilized in biomedical devices.