• Title/Summary/Keyword: Toxicity prediction

Search Result 84, Processing Time 0.022 seconds

In vitro Biocompatibility Evaluation of Biomaterial-elution Using Inflammatory Cell Lines (염증세포주를 이용한 생체재료 용출물의 체외 생체적합성 평가)

  • Shin, Youn-Ho;Song, Kye-Yong;Seo, Min-Ji;Kim, Sung-Min;Park, Jung-Keug;Kim, Dong-Sup;Park, Ki-Jung;Hur, Chan-Hoi;Cha, Ji-Hun;Seo, Young-Kwon
    • KSBB Journal
    • /
    • v.26 no.3
    • /
    • pp.248-254
    • /
    • 2011
  • Various biometerials have been researched and have been developed for treatment of some disease through transplantation to body. They have been evaluated by in vitro cytotoxicity test using some skin-derived cell lines for prediction of their biocompatibility in vivo. However, the results of experiments using mesenchymal or epithelial cells could not be considered in vivo immune reaction. In this study, we evaluated the biomaterial-elution (elute from high density polyethylene film) using some cell lines (L929, Jurkat, U937) in vitro, and then that results were compared with in vivo results from guinea pig sensitization test. In sensitization test, saline and elution of syringe could not induce erythema, but only DNCB (hypersensitive chemical) induce erythema at guinea pig sensitization test. In cell experiment, the cytotoxicity results of inflammatory cells (Jurkat; T lymphocyte, U937; monocyte) was no difference with L929 (fibroblast) in the overall trend. However, inflammatory cell lines were only secreted inflammatory cytokine (TNF-${\alpha}$, INF-${\gamma}$) in some materials (biomateriallution, FAC, DNCB). And the biomaterial-elution did not have toxicity to the cells, but it induced the inflammatory cytokines in inflammatory cell lines only. So, we were predicted inflammatory reaction through the cytokine resultes of inflammatory cell lines, and it was more correlated with in vivo results than cytotoxicity test. Therefore, we suggested that the inflammatory cytokine assay using inflammatory cell lines are more effective method in vitro for evaluation of biocompatibility of biomaterials or chemicals.

Breast Radiotherapy with Mixed Energy Photons; a Model for Optimal Beam Weighting

  • Birgani, Mohammadjavad Tahmasebi;Fatahiasl, Jafar;Hosseini, Seyed Mohammad;Bagheri, Ali;Behrooz, Mohammad Ali;Zabiehzadeh, Mansour;meskani, Reza;Gomari, Maryam Talaei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7785-7788
    • /
    • 2015
  • Utilization of high energy photons (>10MV) with an optimal weight using a mixed energy technique is a practical way to generate a homogenous dose distribution while maintaining adequate target coverage in intact breast radiotherapy. This study represents a model for estimation of this optimal weight for day to day clinical usage. For this purpose, treatment planning computed tomography scans of thirty-three consecutive early stage breast cancer patients following breast conservation surgery were analyzed. After delineation of the breast clinical target volume (CTV) and placing opposed wedge paired isocenteric tangential portals, dosimeteric calculations were conducted and dose volume histograms (DVHs) were generated, first with pure 6MV photons and then these calculations were repeated ten times with incorporating 18MV photons (ten percent increase in weight per step) in each individual patient. For each calculation two indexes including maximum dose in the breast CTV ($D_{max}$) and the volume of CTV which covered with 95% Isodose line ($V_{CTV,95%IDL}$) were measured according to the DVH data and then normalized values were plotted in a graph. The optimal weight of 18MV photons was defined as the intersection point of $D_{max}$ and $V_{CTV,95%IDL}$ graphs. For creating a model to predict this optimal weight multiple linear regression analysis was used based on some of the breast and tangential field parameters. The best fitting model for prediction of 18MV photons optimal weight in breast radiotherapy using mixed energy technique, incorporated chest wall separation plus central lung distance (Adjusted R2=0.776). In conclusion, this study represents a model for the estimation of optimal beam weighting in breast radiotherapy using mixed photon energy technique for routine day to day clinical usage.

The Classification System and Information Service for Establishing a National Collaborative R&D Strategy in Infectious Diseases: Focusing on the Classification Model for Overseas Coronavirus R&D Projects (국가 감염병 공동R&D전략 수립을 위한 분류체계 및 정보서비스에 대한 연구: 해외 코로나바이러스 R&D과제의 분류모델을 중심으로)

  • Lee, Doyeon;Lee, Jae-Seong;Jun, Seung-pyo;Kim, Keun-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.127-147
    • /
    • 2020
  • The world is suffering from numerous human and economic losses due to the novel coronavirus infection (COVID-19). The Korean government established a strategy to overcome the national infectious disease crisis through research and development. It is difficult to find distinctive features and changes in a specific R&D field when using the existing technical classification or science and technology standard classification. Recently, a few studies have been conducted to establish a classification system to provide information about the investment research areas of infectious diseases in Korea through a comparative analysis of Korea government-funded research projects. However, these studies did not provide the necessary information for establishing cooperative research strategies among countries in the infectious diseases, which is required as an execution plan to achieve the goals of national health security and fostering new growth industries. Therefore, it is inevitable to study information services based on the classification system and classification model for establishing a national collaborative R&D strategy. Seven classification - Diagnosis_biomarker, Drug_discovery, Epidemiology, Evaluation_validation, Mechanism_signaling pathway, Prediction, and Vaccine_therapeutic antibody - systems were derived through reviewing infectious diseases-related national-funded research projects of South Korea. A classification system model was trained by combining Scopus data with a bidirectional RNN model. The classification performance of the final model secured robustness with an accuracy of over 90%. In order to conduct the empirical study, an infectious disease classification system was applied to the coronavirus-related research and development projects of major countries such as the STAR Metrics (National Institutes of Health) and NSF (National Science Foundation) of the United States(US), the CORDIS (Community Research & Development Information Service)of the European Union(EU), and the KAKEN (Database of Grants-in-Aid for Scientific Research) of Japan. It can be seen that the research and development trends of infectious diseases (coronavirus) in major countries are mostly concentrated in the prediction that deals with predicting success for clinical trials at the new drug development stage or predicting toxicity that causes side effects. The intriguing result is that for all of these nations, the portion of national investment in the vaccine_therapeutic antibody, which is recognized as an area of research and development aimed at the development of vaccines and treatments, was also very small (5.1%). It indirectly explained the reason of the poor development of vaccines and treatments. Based on the result of examining the investment status of coronavirus-related research projects through comparative analysis by country, it was found that the US and Japan are relatively evenly investing in all infectious diseases-related research areas, while Europe has relatively large investments in specific research areas such as diagnosis_biomarker. Moreover, the information on major coronavirus-related research organizations in major countries was provided by the classification system, thereby allowing establishing an international collaborative R&D projects.

Correlation of Active Ingredients and End-use Products Pesticide on Irritation and Sensitization (농약원제 및 제품 간의 자극성 및 감작성 상관성 평가 연구)

  • Lee, Je-Bong;Shin, Jin-Sup;Park, Yeon-Ki;Jeong, Mi-Hye;Hong, Soon-Sung;Im, Gun-Jae;Kang, Kyu-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.2
    • /
    • pp.79-85
    • /
    • 2010
  • This study was investigated to review the potentials of irritation and skin sensitization of active ingredients and end-use products of pesticides for pesticide registration, prediction of irritation and sensitization, and data requirements for other purposes. Pesticide irritation and sensitization referred to the Pesticide Manual(14th edition), while toxicity was evaluated based on the data submitted by the pesticide registrant. Totally 148 active ingredients and 149 end-use products were analyzed to compare the positive response, formulation type, and correlation between active ingredients and products. Among active ingredients, ratio of positive response to skin irritation, eye irritation, and skin sensitization were 18.8, 47.0 and 20.6% respectively. While, positive response to skin irritation, eye irritation, and skin sensitization of the products were 14.9, 38.9 and 23.6%, respectively. Emulsifiable concentrate showed the highest positive response among formulation types showing skin irritation 31.3%, eye irritation 81.3%, and skin sensitization 31.3%. On the other hand granule type showed the lowest response with skin 4.8, eye 14.3 and sensitization 14.8%. There was no correlation by active ingredient content on irritation and sensitization of products. However, both active ingredients and products showed same positive response were skin 73.1%, skin sensitization 66.2%, and eye irritation 44.7%. By the these results, correlation between technical grade of active ingredients and end-use products would be use for pesticide management at the screening stage, especially skin irritation and skin sensitization.