• Title/Summary/Keyword: Toxicant-induced liver injury

Search Result 4, Processing Time 0.022 seconds

The Effect of Kamihaengche-tang Plus Yukmijihwang-tangon Oxidant and Hg-induced Rabbit's Liver Cell Injury (가미행체탕 합 육미지황탕이 Oxidant 및 Hg에 의한 가토 간세포손상에 미치는 영향)

  • 이수행;김원길;김우환
    • The Journal of Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.174-187
    • /
    • 2002
  • Objectives : This study was carried out to determine whether Kamihaengche-tang plus Yulanijihwang-tang (KCYH) exerts a protective effect against oxidant-induced liver cell injury. Methods : Cell injury was estimated by measuring lactate dehydrogenase (LDH) and alanine aminotransferase (ALT) release, and lipid peroxidation was estimated by measuring malondialdehyde, a product of lipid peroxidation in rabbit liver slices. Results : Oxidants (tBHP and $H_2O_2$) increased dose-dependently LDH release which was significantly prevented by 1% KCYH. The protective effect of KCYH against oxidant-induced cell injury was dose-dependent in the range of 0.05-1 % concentrations. Similarly, KCYH inhibited oxidant-induced lipid peroxidation in a dose-dependent manner. When liver tissues were exposed to Hg (0.5 mM), ALT activity in the medium and lipid peroxidation in tissues were markedly increased. These changes were prevented by 1% KCYH, KCYH restored toxicant-induced inhibition of cellular GSH content. KCYH increased the activities of catalase and glutathion peroxidase in oxidant-treated tissues. Conclusions : These results indicate that KCYH exerts a protective effect against oxidant-induced liver cell injury, and this effect is attributed to prevention of lipid peroxidation. These effects may be due to an increase in concentration of endogenous antioxidants.

  • PDF

Role of Kupffer Cells in Cold/warm Ischemia-Reperfusion Injury or Rat Liver

  • Lee, Young-Goo;Lee, Sang-Ho;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.620-625
    • /
    • 2000
  • The mechanisms of liver injury from cold storage and reperfusion are not completely under-stood. The aim of the present study was to investigate whether the inactivation of Kupffer cells (KCs) by gadolinium chloride ($GdCl_3$) modulates ischemia-reperfusion injury in the rat liver. Hepatic function was assessed using an isolated perfused rat liver model. In livers subjected to cold storage at $4^{\circ}C$ in University of Wisconsin solution for 24 hrs and to 20 min rewarm-ing ischemia, oxygen uptake was markedly decreased, Kupffer cell phagocytosis was stimulated, releases of purine nucleoside phosphorylase and lactate dehydrogenase were increased as compared with control livers. Pretreatment of rats with $GdCl_3$) , a selective KC toxicant, suppressed kupffer cell activity, and reduced the grade of hepatic injury induced by ischemia-reperfusion. While the initial mixed function oxidation of 7-ethoxycoumarin was not different from that found in the control livers, the subsequent conjugation of its meta-bolite to sulfate and glucuronide esters was suppressed by ischemia-reperfusion, CdCl$_3$restored sulfation and glucuronidation capacities to the level of the control liver. Our findings suggest that Kupffer cells could play an important role in cold/warm ischemia-reperfusion hepatic injury.

  • PDF

Effects of Cadmium on Heat Shock Protein Induction and on Clinical Indices in Rats (카드뮴이 랫드의 Heat Shock Protein 발현에 미치는 영향과 독성학적 변화에 관한 연구)

  • 김판기
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.4
    • /
    • pp.91-101
    • /
    • 1996
  • Exposure indices are important tools which enable scientists to reliably predict and detect exposures to xenobiotics and resultant cell injury. Since the de novo synthesis of stress proteins can be detected early after exposure to some agents, analysis of toxicant-induced changes in gene expression, i.e. alterations in patterns of protein synthesis, may be useful to develop as biomarkers of exposure and toxicity. The acute and chronic effects of cadmium(Cd, $CdCl_2$ 20 mg/kg) on Wistar male rats were evaluated concerning cadmium contents, tissues enzyme activity, HSP expression. The results of the study were as follows: 1. Less cadmium was absorbed through the digestive tracts, but the ratio of contents in renal to hepatic cadmium was higher at 8 weeks after treatment. 2. ALT(alanine aminotransferase), AST(aspartate aminotransferase), glucose, BUN(blood urea nitrogen), creatinine, the key indices of the clinical changes in hepatic and renal function were significantly changed by the cadmium treatment after 1 week in liver, after 4 weeks in kidney. 3. Enhanced synthesis of 70 KDa relative molecular mass proteins were detected in 2 hours after cadmium exposure, with maximum activity occurring at 8~48 hours. Induction of $HSP_{70}$ was evident at proximal tubules and glomeruli in kidney. Testicular cells produced enough HSP to be detected normally. From the above results, it could be concluded that $HSP_{70}$ induction by the cadmium treatment was a rapid reaction to indicate the exposure of xenobiotics.

  • PDF

Induction of Microsomal Epoxide Hydrolase, rGSTA2, rGSTA3/5, and rGSTM1 by Disulfiram, but not by Diethyldithiocarbamate, a Reduced Form of Disulfiram

  • Kim, Sang-Geon;Kim, Hye-Jung
    • Toxicological Research
    • /
    • v.13 no.4
    • /
    • pp.339-347
    • /
    • 1997
  • Disulfiram (DSF) and diethyldithiocarbamate (DDC), a reduced form of DSF, protect the liver against toxicant-induced injury through inhibition of cytochrome P450 2E1. The effect of DSF and DDC on the levels of major hepatic microsomal epoxide hydrolase (mEH) and glutathione S-transferase (GST) expression was comparatively studied, given the view that these enzymes are involved in terminal detoxification events for high energy intermediates of xenobiotics. Treatment of rats with a single dose of DSF (20-200 mg/kg, po) resulted in 2- to 15-fold increases in the mEH mRNA level at 24 hr with the ED$_{50}$ value being noted as 60 mg/kg. The mEH mRNA level was elevated ~15-fold at 24 hr after treatment at the dose of 100 mg/kg, whereas the hepatic mRNA level was rather decreased from the maximum at the dose of 200 mg/kg, indicating that DSF might cause cytotoxicity at the dose. In contrast to the effect of DSF, DDC only minimally elevated the mEH mRNA level at the doses employed. DSF moderately increased the major GST mRNA levels in the liver as a function of dose, resulting in rGSTA2, rGSTA3/5 or rGSTM1 mRNA levels being elevated 3- to 4-fold at 24 hr post-treatment, whereas the rGSTM2 mRNA level was not altered. DDC, however, failed to stimulate the mRNA levels for major GST subunits, indicating that the reduced form of DSF was ineffective in stimulating the GST the expression. The effect of other organosulfides including aldrithiol, 2, 2'-dithiobis(benzothiazole) (DTB), tetramethylthiouram disulfide (TMTD) and allyl disulfide (ADS) on the hepatic mEH and GST mRNA expression was assessed in rats in order to further confirm the increase in the gene expression by other disulfides. Treatment of rats with aldrithiol (100 mg/kg, po) resulted in a 16-fold increase in the mEH mRNA level at 24 hr post-treatment. DTB, TMTD and ADS also caused 5-, 9- and 12-fold increases in the rnRNA level, respectively, as compared to control. Thus, all of the disulfides examined were active in stimulating the mEH gene in the liver. The organosulfides significantly increased the rGSTA2, rGSTA3, rGSTA5 and rGSTM1 mRNA levels at 24 hr after administration. In particular, aldrithiol was very efficient in stimulating the rGSTA and rGSTM genes among the disulfides examined. These results provide evidence that DSF and other sulfides effectively stimulate the mEH and major GST gene expression at early times in the liver and that DDC, a reduced form of DSF, was ineffective in stimulating the expression of the genes, supporting the conclusion that reduced form(s) of organosulfur compound(s) might be less effective in inducing the mEH and GST genes through the antioxidant responsive element(s).

  • PDF