• Title/Summary/Keyword: Toxic model

Search Result 335, Processing Time 0.026 seconds

A Study of Consequence Analysis of Physical Explosion Damage in CO2 Storage Tank (CO2 임시 저장 탱크에서의 물리적 폭발에 따른 피해영향 고찰)

  • Seo, Doo-Hyoun;Jang, Kap-Man;Lee, Jin-Han;Rhie, Kwang-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.12-19
    • /
    • 2015
  • $CO_2$ is non-flammable, non-toxic gas and not cause of chemical explosion. However, various impurities and some oxides can be included in the captured $CO_2$ inevitably. While the $CO_2$ gas was temporarily stored, the pressure in a storage tank would be reached above 100bar. Therefore, the tank could occur a physical explosion due to the corrosion of vessel or uncertainty. Evaluating the intensity of explosion can be calculated by the TNT equivalent method generally used. To describe the physical explosion, it is assumed that the capacity of a $CO_2$ temporary container is about 100 tons. In this work, physical explosion damage in a $CO_2$ storage tank is estimated by using the Hopkinson's scaling law and the injury effect of human body caused by the explosion is assessed by the probit model.

A Neural Network-Based Tracking Method for the Estimation of Hazardous Gas Release Rate Using Sensor Network Data (센서네트워크 데이터를 이용하여 독성물질 누출속도를 예측하기 위한 신경망 기반의 역추적방법 연구)

  • So, Won;Shin, Dong-Il;Lee, Chang-Jun;Han, Chong-Hun;Yoon, En-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.38-41
    • /
    • 2008
  • In this research, we propose a new method for tracking the release rate using the concentration data obtained from the sensor. We used a sensor network that has already been set surrounding the area where hazardous gas releases can occur. From the real-time sensor data, we detected and analyzed releases of harmful materials and their concentrations. Based on the results, the release rate is estimated using the neural network. This model consists of 14 input variables (sensor data, material properties, process information, meteorological conditions) and one output (release rate). The dispersion model then performs the simulation of the expected dispersion consequence by combining the sensor data, GIS data and the diagnostic result of the source term. The result of this study will improve the safety-concerns of residents living next to storage facilities containing hazardous materials by providing the enhanced emergency response plan and monitoring system for toxic gas releases.

  • PDF

Vulnerability Assessment for Fine Particulate Matter (PM2.5) in the Schools of the Seoul Metropolitan Area, Korea: Part I - Predicting Daily PM2.5 Concentrations (인공지능을 이용한 수도권 학교 미세먼지 취약성 평가: Part I - 미세먼지 예측 모델링)

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1881-1890
    • /
    • 2021
  • Particulate matter (PM) affects the human, ecosystems, and weather. Motorized vehicles and combustion generate fine particulate matter (PM2.5), which can contain toxic substances and, therefore, requires systematic management. Consequently, it is important to monitor and predict PM2.5 concentrations, especially in large cities with dense populations and infrastructures. This study aimed to predict PM2.5 concentrations in large cities using meteorological and chemical variables as well as satellite-based aerosol optical depth. For PM2.5 concentrations prediction, a random forest (RF) model showing excellent performance in PM concentrations prediction among machine learning models was selected. Based on the performance indicators R2, RMSE, MAE, and MAPE with training accuracies of 0.97, 3.09, 2.18, and 13.31 and testing accuracies of 0.82, 6.03, 4.36, and 25.79 for R2, RMSE, MAE, and MAPE, respectively. The variables used in this study showed high correlation to PM2.5 concentrations. Therefore, we conclude that these variables can be used in a random forest model to generate reliable PM2.5 concentrations predictions, which can then be used to assess the vulnerability of schools to PM2.5.

Health Risk Assessment for Residents after Exposure to Chemical Accidents: Formaldehyde (화학사고물질 노출에 따른 피해지역 주민 건강위해성평가: 폼알데하이드 사례를 중심으로)

  • Park, Sihyun;Cho, Yong-Sung;Lim, Huibeen;Park, Jihoon;Lee, Cheolmin;Hwang, Seung-Ryul;Lee, Chungsoo
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.2
    • /
    • pp.155-165
    • /
    • 2021
  • Objectives: Acute exposure to high concentrations of chemicals can occur when a chemical accident takes place. As such exposure can cause ongoing environmental pollution, such as in the soil and groundwater, there is a need for a tool that can assess health effects in the long term. The purpose of this study was assessing the health risks of residents living near a chemical accident site due to long-term exposure while considering the temporal concentration changes of the toxic chemicals leaked during the accident until their extinction in the environment using a multimedia environmental dynamics model. Methods: A health risk assessment was conducted on three cases of formaldehyde chemical accidents. In this study, health risk assessment was performed using a multimedia environmental dynamics model that considers the behavior of the atmosphere, soil, and water. In addition, the extinction period of formaldehyde in the environment was regarded as extinction in the environment when the concentration in the air and soil fell below the background concentration prior to the accident. The subjects of health risk assessment were classified into four groups according to age: 0-9 years old, 10-18 years old, 19-64 years old, and over 65 years old. Carcinogenic risk assessment by respiratory exposure and non-carcinogenic risk assessment by soil intake were conducted as well. Results: In the assessment of carcinogenic risk due to respiratory exposure, the excess carcinogenic risk did not exceed 1.0×10-6 in all three chemical accidents, so there was no health effect due to the formaldehyde chemical accident. As a result of the evaluation of non-carcinogenic risk due to soil intake, none of the three chemical accidents had a risk index of 1, so there was no health effect. For all three chemical accidents, the excess cancer risk and hazard index were the highest in the age group 0-9. Next, 10-18 years old, 65 years old or older, and 19-64 years old showed the highest risk. Conclusion: This study considers environmental changes after a chemical accident occurs and until the substance disappears from the environment. It also conducts a health risk assessment by reflecting the characteristics of the long-term persistence and concentration change over time. It is thought that it is of significance as a health risk assessment study reflecting the exposure characteristics of the accident substance for an actual chemical accident.

Prediction of cyanobacteria harmful algal blooms in reservoir using machine learning and deep learning (머신러닝과 딥러닝을 이용한 저수지 유해 남조류 발생 예측)

  • Kim, Sang-Hoon;Park, Jun Hyung;Kim, Byunghyun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1167-1181
    • /
    • 2021
  • In relation to the algae bloom, four types of blue-green algae that emit toxic substances are designated and managed as harmful Cyanobacteria, and prediction information using a physical model is being also published. However, as algae are living organisms, it is difficult to predict according to physical dynamics, and not easy to consider the effects of numerous factors such as weather, hydraulic, hydrology, and water quality. Therefore, a lot of researches on algal bloom prediction using machine learning have been recently conducted. In this study, the characteristic importance of water quality factors affecting the occurrence of Cyanobacteria harmful algal blooms (CyanoHABs) were analyzed using the random forest (RF) model for Bohyeonsan Dam and Yeongcheon Dam located in Yeongcheon-si, Gyeongsangbuk-do and also predicted the occurrence of harmful blue-green algae using the machine learning and deep learning models and evaluated their accuracy. The water temperature and total nitrogen (T-N) were found to be high in common, and the occurrence prediction of CyanoHABs using artificial neural network (ANN) also predicted the actual values closely, confirming that it can be used for the reservoirs that require the prediction of harmful cyanobacteria for algal management in the future.

Association between Soil Contamination and Blood Lead Exposure Level in Areas around Abandoned Metal Mines (폐금속광산지역 토양오염정도와 혈 중 납 노출 수준의 상관성)

  • Seo, Jeong-Wook;Park, Jung-Duck;Eom, Sang-Yong;Kwon, Hee-Won;Ock, Minsu;Lee, Jiho
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.4
    • /
    • pp.227-235
    • /
    • 2022
  • Background: Abandoned metal mines are classified as vulnerable areas with the highest level of soil contamination among risk regions. People living near abandoned metal mines are at increased risk of exposure to toxic metals. Objectives: This study aimed to evaluate the correlation between soil contamination levels in areas around abandoned metal mine and the blood lead levels of local residents. Moreover, we assess the possibility of using soil contamination levels as a predictive indicator for human exposure level. Methods: Data from the Survey of Residents around Abandoned Metal Mines (2013~2017, n=4,421) and Investigation of Soil Pollution in Abandoned Metal Mines (2000~2011) were used. A random coefficient model was conducted for estimation of the lower level (micro data) of the local resident unit and the upper level (macro data) of the abandoned metal mine unit. Through a fitted model, the variation of blood lead levels among abandoned metal mines was confirmed and the effect of the operationally defined soil contamination level was estimated. Results: Among the total variation in blood lead levels, the variation between abandoned mines was 18.6%, and the variation determined by the upper-level factors such as soil contamination and water contamination was 8.1%, which was statistically significant respectively. There was also a statistically significant difference in the least square mean of blood lead concentration according to the level of soil contamination (p=0.047, low: 2.32 ㎍/dL, middle: 2.38 ㎍/dL, high: 2.59 ㎍/dL). Conclusions: The blood lead concentration of residents living near abandoned metal mines was significantly correlated with the level of soil contamination. Therefore, in biomonitoring for vulnerable areas, operationally defined soil contamination can be used as a predictor for human exposure level to hazardous substances and discrimination of high-risk abandoned metal mines.

Recovery Trajectory in Tachycardia Induced Heart Failure Model (빈맥을 이용한 심부전 모델에서 회복궤도)

  • 오중환;박승일;원준호;김은기;이종국
    • Journal of Chest Surgery
    • /
    • v.32 no.5
    • /
    • pp.422-427
    • /
    • 1999
  • Background: Tachycardia induced heart failure model would be the model of choice for the dilated cardiomyopathy. This more closely resembles the clinical syndrome and does not require major surgical trauma, myocardial ischemia and pharmacological or toxic depression of cardiac function. When heart failure is progressive, application of new surgical procedures to the faling heart is highly risky. It has been shown that recovery trajectory from heart failure is a new method in decreasing animal mortality. The purpose is to establish the control datas for recovery trajectory in the canine heart failure model. Material and Method: 21 mongrel dogs were studied at 4 stages(baseline, at the heart failure, 4 and 8 weeks after recovery). Heart failure was induced during 4 weeks of continuous rapid pacing using a pacemaker. Eight weeks of trajectory of recovery period was allowed. Indices of left ventricular function and dimension were measured every 2 weeks and the hemodynamics were measured by use of Swan-Ganz catheterization and thermodilution method every 4 weeks. Values were expressed as mean${\pm}$standard deviation. Result: 4(20%) dogs died due to heart failure. Left ventricular end-diastolic volume at the 4 stages were 40.8${\pm}$7.4, 82.1${\pm}$21.1, 59.9${\pm}$7.7 and 46.5${\pm}$6.5ml. Left ventricular end-systolic volume showed the same trend. Ejection fractions were 50.6${\pm}$4.1, 17.5${\pm}$5.8, 36.3${\pm}$7.3, and 41.5${\pm}$2.4%. Blood pressure and heart rate showed no significant changes. Pressures of central vein, right ventricle, pulmonary artery, and pulmonary capillary wedge showed significant increase during the heart failure period, normalizing at the end of recovery period. Stroke volumes were 21.5${\pm}$8.2, 12.3${\pm}$3.5, 17.9${\pm}$4.6, and 15.5${\pm}$3.4ml. Blood norepinephrine level was 133.3${\pm}$60.0pg/dL at the baseline and 479.4${\pm}$327.3pg/dL at the heart failure stage(p=0.008). Conclusion: Development of tachycardia induced heart failure model is of high priority due to ready availability and reasonable amenability to measurements. Recovery trajectory after cessation of tachycardia showed reduction of cardiac dilatation and heart function. Application of new surgical procedures during the recovery period could decrease animal mortality.

  • PDF

Fate Analysis and Impact Assessment for Vehicle Polycyclic Aromatic Hydrocarbons (PAHs) Emitted from Metropolitan City Using Multimedia Fugacity Model (다매체거동모델을 이용한 대도시 자동차 배출 Polycyclic Aromatic Hydrocarbons (PAHs) 거동 해석 및 영향평가)

  • Rhee, Gahee;Hwangbo, Soonho;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.479-495
    • /
    • 2018
  • This study was carried out to research the multimedia fate modeling, concentration distribution and impact assessment of polycyclic aromatic hydrocarbons (PAHs) emitted from automobiles, which are known as carcinogenic and mutation chemicals. The amount of emissions of PAHs was determined based on the census data of automobiles at a target S-city and emission factors of PAHs, where multimedia fugacity modeling was conducted by the restriction of PAHs transfer between air-soil at the impervious area. PAHs' Concentrations and their distributions at several environmental media were predicted by multimedia fugacity model (level III). The residual amounts and the distributions of PAHs through mass transfer of PAHs between environment media were used to assess the health risk of PAHs at unsteady state (level IV), where the sensitivity analyses of the model parameter of each variable were conducted based on Monte Carlo simulation. The experimental result at S-city showed that Fluoranthene among PAHs substances are the highest residual concentrations (60%, 53%, 32% and 34%) at all mediums (atmospheric, water, soil, sediment), respectively, where most of the PAHs were highly accumulated in the sediment media (more than 80%). A result of PAHs concentration changes in S-city over the past 34 years identified that PAHs emissions from all environmental media increased from 1983 to 2005 and decreased until 2016, where the emission of heavy-duty vehicle including truck revealed the largest contribution to the automotive emissions of PAHs at all environment media. The PAHs concentrations in soil and water for the last 34 years showed the less value than the legal standards of PAHs, but the PAHs in air exceeded the air quality standards from 1996 to 2016. The result of this study is expected to contribute the effective management and monitoring of toxic chemicals of PAHs at various environment media of Metropolitan city.

A Study on the Factors Affecting Removal of Chromium(VI) Using $TiO_{2}$ Photocatalyst in a Circular Type Reactor (순환식 반응기에서 $TiO_{2}$ 광촉매를 이용한 Chromium(VI)의 제거에 미치는 영향인자에 대한 연구)

  • Kim, Hyun-Yong;Cho, Il-Hyoung;Lee, So-Jin;Ki, Won-Ju;Lee, Hong-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.64-69
    • /
    • 1999
  • This study was carried out the removal of Cr(VI) which was known to the toxic pollutant in industry using the process of UV and TiO$_2$ photocatalyst in a circular type reactor. In this experiment, the series of photocatalytic process for the removal of Cr(VI) has been selected as a model reaction in a circular type reactor in order to obtain the basic data on the influence of various experimental parameters such as circulation flow rate, pH of solution, initial Cr(VI) light illumination and TiO$_2$ dosage, and salicylic acid concentration. The results of this study were as follows; 1. With both UV light illumination and TiO$_2$ present, Cr(VI) was more effectively eliminated than with either UV or TiO$_2$ alone. 2. As the circulation flow rate of solution increased, the removal efficiency of Cr(VI) was increased. However, over 2.4 l/min of circulation flow rate, the efficiency wa limited. 3. A increase in the photocatalytic removal of Cr(VI) was noticed with decreasing pH. 4. An increase in the photocatalytic removal of Cr(VI) was noticed with decreasing Initial Cr(VI) concentration and first order kinetics was observed from the result at different initial concentration of Cr(VI). 5. Photocatalytic removal efficiency of Cr(VI) increased with increasing TiO$_2$ dosage. However, over 1.0 g/l of TiO$_2$ dosage, the efficiency reached a plateau. 6. As low concentration of saliculic acid were added, there was an increase in the removal efficiency of Cr(VI). However, over 300 mg/l of salicylic acid, the efficiecy was decreased. It eas found that application of photocatalysis to water treatment that contains both Cr(VI) and salicylic acid was possible.

  • PDF

The Study on the Marine Eco-toxicity and Environmental Risk of Treated Discharge Water from Ballast Water Management System using Plasma and MPUV (Plasma와 MPUV를 이용한 평형수관리장치의 배출수에 대한 해양생태독성 및 해양환경위해성에 관한 연구)

  • Shon, M.B.;Son, M.H;Lee, J.;Lee, S.U.;Lee, J.D.;Moon, C.H.;Kim, Y.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.281-291
    • /
    • 2012
  • In this study, WET (whole effluent toxicity) test with Skeletonema costatum, Tigriopus japonicus and Paralichthys olivaceus and ERA (environmental risk assessment) were conducted to assess the unacceptable effect on marine ecosystem by emitting the treated discharge water from 'ARA Plasma BWTS' BWMS (ballast water management system) using filtration, Plasma and MPUV module. 34 psu treated discharge water from ARA Plasma BWTS shown slight chronic toxicity effect on the P. olivaceus ($7d-LC_{50}{\Rightarrow}100.00%$ treated discharge water, $7d-LC_{25}{\Rightarrow}85.15%$ treated discharge water). Bromobenzene, chlorobenzene and 4-chlorotoluene in 34 psu treated discharge water from ARA Plasma BWTS were higher than in the background original content of seawater. The PECs (predictive environmental concentrations) of bromobenzene, chlorobenzene and 4-chlorotoluene calculated by MAMPEC (marine antifoulant model to predict environmental concentrations) program (ver. 3.0) were 3.34E-03, 2.10E-03 and 1.73E-03 ${\mu}g\;L^{-1}$, respectively and PNECs (predicted no effect concentrations) of them were 1.6, 0.5 and 1.9 ${\mu}g\;L^{-1}$. The PEC/PNEC ratio of bromobenzene, chlorobenzene and 4-chlorotoluene did not exceed one and 3 substances did not consider as persistence, bioaccumulative and toxic. Therefore, it was suggested that treated discharge water from ARA Plasma BWTS did not pose unacceptable effect on marine ecosystem.