• Title/Summary/Keyword: Toxic model

Search Result 335, Processing Time 0.026 seconds

Bio Toxicity Assessment and Kinetic Model of 6 Heavy Metals Using Luminous Bacteria (발광미생물을 이용한 중금속 6종의 생물독성 평가 및 모델링)

  • Kim, Ilho;Lee, Jaiyeop
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.547-555
    • /
    • 2018
  • In addition to North America and Europe, Korea is also responding to the toxic damage caused by the production and distribution of chemicals. Methods for assessing bio-toxicity of harmful substances have been widely introduced, but it is required of quantitative and speedy information for modeling. For 6 heavy metals, as zinc, copper, chrome, cadmium, mercury and lead, bio-toxicity assessment and kinetics model were constructed using Vibrio fischeri which is widely used luminous bacteria. The degree of luminescence activity and the toxicity of heavy metals were relative limunescence unit, RLU measured as by using a photomultiplier embedded device. The toxicity was assessed by the concentration levels giving under 20% lethality and lethal concentration, $EC_{50}$. In the results, the toxicity order were followed from mercury, lead, copper, chrome, zinc and cadmium. $EC_{{50},{\infty}}$ obtained by trends of $EC_{50}$ by time follows had highly linear agreement with main parameters of bio-toxicity modelling. The average error rates of the reproduced lethality obtained from DAM and TDM model on the basis of body residue, were 10.2% for mercury, lead, copper, chrome and 20.0 for the all 6 methals.

Evaluation of the antimalarial activity of SAM13-2HCl with morpholine amide (SKM13 derivative) against antimalarial drug-resistant Plasmodium falciparum and Plasmodium berghei infected ICR mice

  • Hyelee Hong;Kwonmo Moon;Thuy-Tien Thi Trinh;Tae-Hui Eom;Hyun Park;Hak Sung Kim;Seon-Ju Yeo
    • Parasites, Hosts and Diseases
    • /
    • v.62 no.1
    • /
    • pp.42-52
    • /
    • 2024
  • Antimalarial drugs are an urgently need and crucial tool in the campaign against malaria, which can threaten public health. In this study, we examined the cytotoxicity of the 9 antimalarial compounds chemically synthesized using SKM13-2HCl. Except for SKM13-2HCl, the 5 newly synthesized compounds had a 50% cytotoxic concentration (CC50) >100 μM, indicating that they would be less cytotoxic than SKM13-2HCl. Among the 5 compounds, only SAM13-2HCl outperformed SKM13-2HCl for antimalarial activity, showing a 3- and 1.3-fold greater selective index (SI) (CC50/IC50) than SKM13-2HCl in vitro against both chloroquine-sensitive (3D7) and chloroquine -resistant (K1) Plasmodium falciparum strains, respectively. Thus, the presence of morpholine amide may help to effectively suppress human-infectious P. falciparum parasites. However, the antimalarial activity of SAM13-2HCl was inferior to that of the SKM13-2HCl template compound in the P. berghei NK65-infected mouse model, possibly because SAM13-2HCl had a lower polarity and less efficient pharmacokinetics than SKM13-2HCl. SAM13-2HCl was more toxic in the rodent model. Consequently, SAM13-2HCl containing morpholine was selected from screening a combination of pharmacologically significant structures as being the most effective in vitro against human-infectious P. falciparum but was less efficient in vivo in a P. berghei-infected animal model when compared with SKM13-2HCl. Therefore, SAM13-2HCl containing morpholine could be considered a promising compound to treat chloroquine-resistant P. falciparum infections, although further optimization is crucial to maintain antimalarial activity while reducing toxicity in animals.

Red to Red - the Marine Bacterium Hahella chejuensis and its Product Prodigiosin for Mitigation of Harmful Algal Blooms

  • Kim, Doc-Kyu;Kim, Ji-Hyun F.;Yim, Joung-Han;Kwon, Soon-Kyeong;Lee, Choong-Hwan;Lee, Hong-Kum
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1621-1629
    • /
    • 2008
  • Harmful algal blooms (HABs), commonly called red tides, are caused by some toxic phytoplanktons, and have made massive economic losses as well as marine environmental disturbances. As an effective and environment-friendly strategy to control HAB outbreaks, biological methods using marine bacteria capable of killing the harmful algae or algicidal extracellular compounds from them have been given attention. A new member of the $\gamma$-Proteobacteria, Hahella chejuensis KCTC 2396, was originally isolated from the Korean seashore for its ability to secrete industrially useful polysaccharides, and was characterized to produce a red pigment. This pigment later was identified as an alkaloid compound, prodigiosin. During the past several decades, prodigiosin has been extensively studied for its medical potential as immunosuppressants and antitumor agents, owing to its antibiotic and cytotoxic activities. The lytic activity of this marvelous molecule against Cochlodinium polykrikoides cells at very low concentrations ($\sim$l ppb) was serendipitously detected, making H. chejuensis a strong candidate among the biological agents for HAB control. This review provides a brief overview of algicidal marine bacteria and their products, and describes in detail the algicidal characteristics, biosynthetic process, and genetic regulation of prodigiosin as a model among the compounds active against red-tide organisms from the biochemical and genetic viewpoints.

Effects of Gamiolnyeo-jeon on Lipid Metabolism and Blood Glucose Level in db/db Mice (가미옥녀전(加味玉女煎)이 db/db 마우스 당뇨(糖尿)모델에서 지질대사(脂質代謝)와 항당뇨(抗糖尿) 효능(效能)에 미치는 영향(影響))

  • Sim, Boo-Yong;Kim, Dong-Hee
    • The Korea Journal of Herbology
    • /
    • v.31 no.2
    • /
    • pp.39-45
    • /
    • 2016
  • Objectives : Abnormal regulation of glucose and impaired lipid metabolism that result from a defective or deficient insulin are the key etiological factor in type 2 diabetes mellitus. The our study investigated the effects of Gamioknyeo-jeon (GO) on blood glucose and lipid metabolism improved by it in db/db mice (a murine model of type 2 diabetes mellitus).Methods : The animals were divided into 3 groups: Normal groups were not-treated C57BL/6 mice; Control groups were treated orally with DW in db/db mice; GO groups were treated orally with GO (200 ㎎/㎏/day) in db/db mice. After mice were treated with GO for 5 weeks, we measured AST, ALT, creatinine, BUN, body weight, food intake, blood glucose, insulin and lipid levels (total cholesterol, HDL cholesterol, and LDL cholesterol and atherogenic index(AI) and cardiac risk factor(CRF).Results : Serum AST, ALT, creatinine, BUN levels were not changed by GO do not show any toxic effects. GO groups were decreased in body weight, food intake and blood glucose level among compared to Control groups. Also, GO groups were found to have atherogenic Index and cardiac risk factor as well as lipid metabolism improvement (total cholesterol and LDL cholesterol decrease). Finally, GO groups were increased the insulin compared to Normal and control groups.Conclusions : We suggest that GO may have the control effects of diabetes mellitus by improving blood glucose control and lipid metabolism.

A Study on the Reduction of Volatile Organic Compounds by Fatsia japonica and Ardisia pusilla (팔손이와 산호수에 의한 휘발성유기화합물 저감효과에 관한 연구)

  • Song, Jeong Eun
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.77-82
    • /
    • 2012
  • This study conducted the experiment of reduction of Volatile Organic Compounds(VOCs) and Formaldehyde concentration by Native plants, Fatsia japonica and Ardisia pusilla. The two plants are advantageous in that they are highly available as they grow wild, and being easy to get. Fatsia japonica is a plant of its wide and large leaf diverged 7 or 8 parts, which is thought to have a high effect of air purification. Ardisia pusilla has a smaller leaf than Fatsia japonica, which is characterized by more leaves and beautiful. Field measurements were performed using Fatsia japonica and Ardisia pusilla which were verified as air-purifying plants in Korea. The effect of reducing the concentration of VOCs and Formaldehyde by plant studied in a full scale mock-up model. The dimensions of the two models were equal. The concentration of Benzene, Toluene, Ethylbenzene, Xylene, Stylene, Formaldehyde were monitored, since they were known as most toxic materials. The concentration of VOCs was monitored three hours after the plants were placed and three days after the plants were placed. Field measurements were performed in models where the plants were placed and were not. As a result, they had all an effect of reducing pollution. In all cases of experiment of planting and growing volume, the more planting volume, the more excellent the effect. Toluene was more effective in Fatsia japonica and Ardisia pusilla planted, Formaldehyde was more effective in Fatsia japonica planted respectively. In planting and growing and placing experiment, the placement at sunny spot was more effective than that at scattered growing. When Fatsia japonica was placed at sunny spot, the reduction effect of Formaldehyde was the most excellent, and when Ardisia pusilla was placed at sunny spot, the reduction effect of Toluene was the most effective.

A Study on Zone-based Risk Analysis System using Real-time Data (실시간 데이터를 이용한 지역기반 위험분석 시스템에 관한 연구)

  • Oh, Jeong Seok;Bang, Hyo Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.83-89
    • /
    • 2013
  • Energy industry facilities can cause fatal damage for internal industry employee as well as external general people because handling various kinds of gas and harmful substance might be spread to large scale severe accident by fire, explosion, and toxic gas leakage. In order to prevent these accidents, quantification by damage effect on structure and human is tried by using quantitative risk assessment, but it is difficult to process instantly exceptional cases and requires knowledge of expert. This paper aims to minimize exceptional cases and knowledge of expert, and present risk with human perceptible. So, we designed and developed zone-base risk analysis system that can compute risk of zone in real time at that point using database and incremental model.

Amelioration of 1,2 Dimethylhydrazine (DMH) Induced Colon Oxidative Stress, Inflammation and Tumor Promotion Response by Tannic Acid in Wistar Rats

  • Hamiza, Oday O.;Rehman, Muneeb U.;Tahir, Mir;Khan, Rehan;Khan, Abdul Quaiyoom;Lateef, Abdul;Ali, Farrah;Sultana, Sarwat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4393-4402
    • /
    • 2012
  • Colon cancer is the third most common malignant neoplasm in the world and it remains an important cause of death, especially in western countries. The toxic environmental pollutant, 1, 2-dimethylhydrazine (DMH), is also a colon-specific carcinogen. Tannic acid (TA) is reported to be effective against various types of chemically induced toxicity and also carcinogenesis. In the present study, we evaluated the chemopreventive efficacy of TA against DMH induced colon toxicity in a rat model. Efficacy of TA against the colon toxicity was evaluated in terms of biochemical estimation of antioxidant enzyme activities, lipid peroxidation, histopathological changes and expression of early molecular markers of inflammation and tumor promotion. DMH treatment induced oxidative stress enzymes (p<0.001) and an early inflammatory and tumor promotion response in the colons of Wistar rats. TA treatment prevented deteriorative effects induced by DMH through a protective mechanism that involved reduction of oxidative stress as well as COX-2, i-NOS, PCNA protein expression levels and TNF-${\alpha}$ (p<0.001) release. It could be concluded from our results that TA markedly protects against chemically induced colon toxicity and acts plausibly by virtue of its antioxidant, anti-inflammatory and antiproliferative activities.

p-Coumaric Acid Potently Down-regulates Zebrafish Embryo Pigmentation: Comparison of in vivo Assay and Computational Molecular Modeling with Phenylthiourea

  • Kim, Dong-Chan;Kim, Seonlin;Hwang, Kyu-Seok;Kim, Cheol-Hee
    • Biomedical Science Letters
    • /
    • v.23 no.1
    • /
    • pp.8-16
    • /
    • 2017
  • p-Coumaric acid is an organic compound that is a hydroxyl derivative of cinnamic acid. Due to its multiple biological activities p-coumaric acid has been widely studied in biochemical and cellular systems and is also considered as a useful therapeutic candidate for various neuronal diseases. However, the efficacy of p-coumaric acid on zebrafish developmental regulation has not been fully explored. In this study, therefore, we first investigated the action mechanism of the p-coumaric acid on the zebrafish development in a whole-organism model. p-Coumaric acid treated group significantly inhibited the pigmentation of the developing zebrafish embryos compared with control embryos without any severe side effects. In addition, p-coumaric acid down-regulated more effectively in a lower concentration than the well-known zebrafish's melanogenic inhibitor, phenylthiourea. We also compared the molecular docking property of p-coumaric acid with phenylthiourea on the tyrosinase's kojic acid binding site, which is the key enzyme of zebrafish embryo pigmentation. Interestingly, p-coumaric acid interacted with higher numbers of the amino acid residues and exhibited a tight binding affinity to the enzyme than phenylthiourea. Taken all together, these results strongly suggest that p-coumaric acid inhibits the activity of tyrosinase, consequently down-regulating zebrafish embryo pigmentation, and might play an important role in the reduction of dermal pigmentation. Thus, p-coumaric acid can be an effective and non-toxic ingredient for anti-melanogenesis functional materials.

The Effects of Hataedock on 2,4-dinitrofluorobenzene Induced Atopic Dermatitis Like Skin Lesion in NC/Nga Mice (하태독법 중 황련감초법이 DNFB로 유발된 NC/Nga 생쥐의 아토피 피부염에 미치는 영향)

  • Cha, Ho Yeol;Ahn, Sang Hyun;Jeong, A Ram;Cheon, Jin Hong;Park, Sun Young;Kim, Ki Bong
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.97-107
    • /
    • 2015
  • Objectives Hataedock is the treatment that dispels toxic heat and meconium gathered at the fetus for the new born baby by orally administered herbal extracts. The purpose of this study was to evaluate whether Hataedock alleviate inflammatory skin damages in AD-induced NC/Nga mice through regulating of skin barrier maintain and Th2 differentiation. Methods We established an AD model in the 3-week-old NC/Nga mice through the repeated application of DNFB (dinitrochlorobenzene) on days 28, 35, 42 after Hataedock treatment which was orally administered. We identified the changes of skin barrier and Th2 differentiation through the histological and immunohistochemical changes of protein kinase C (PKC), interleukin (IL)-4, degranulated mast cell, Substance P and MMP-9. Results Our results suggested that Hataedock treatment significantly down-regulated levels of PKC by 82% (p < 0.001), as well as IL-4 by 56% (p < 0.001). Hataedock also suppressed mast cell infiltration, ear edema formation. and Substance P in the tissue of NC/Nga mice were decreased by 57% (p < 0.001), and MMP-9 by 55% (p < 0.001). Conclusions These results suggest that Hataedock alleviates AD through the down-regulation of PKC and Th2 cytokines, which are involved in the initial steps of AD development. Hataedock have potential application for the treatment of AD.

Studies on the Influence of Mercaptoacetic Acid (MAA) Modification of Cassava (Manihot sculenta Cranz) Waste Biomass on the Adsorption of Cu2+ and Cd2+ from Aqueous Solution

  • Horsfall, M. Jnr.;Spiff, A.I.;Abia, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.969-976
    • /
    • 2004
  • Cassava peelings waste, which is both a waste and pollutant, was chemically modified using mercaptoacetic acid (MAA) and used to adsorb $Cu^{2+}\;and\;Cd^{2+}$ from aqueous solution over a wide range of reaction conditions at $30^{\circ}C$. Acid modification produced a larger surface area, which significantly enhanced the metal ion binding capacity of the biomass. An adsorption model based on the $Cu^{2+}/Cd^{2+}$ adsorption differences was developed to predict the competition of the two metal ions towards binding sites for a mixed metal ion system. The phytosorption process was examined in terms of Langmuir, Freundlich and Dubinin-Radushkevich models. The models indicate that the cassava waste biomass had a greater phytosorption capacity, higher affinity and greater sorption intensity for $Cu^{2+}\;than\;Cd^{2+}$. According to the evaluation using Langmuir equation, the monolayer binding capacity obtained was 127.3 mg/g $Cu^{2+}$ and 119.6 mg/g $Cd^{2+}$. The kinetic studies showed that the phytosorption rates could be described better by a pseudo-second order process and the rate coefficients was determined to be $2.04{\times}10^{-3}\;min^{-1}\;and\;1.98{\times}10^{-3}\;min^{-1}\;for\;Cu^{2+}\;and\;Cd^{2+}$ respectively. The results from these studies indicated that acid treated cassava waste biomass could be an efficient sorbent for the removal of toxic and valuable metals from industrial effluents.