• Title/Summary/Keyword: Toxic effects

Search Result 1,762, Processing Time 0.033 seconds

Effects of Jogihaeatag(調氣解瘀湯) on the Cerebral Cortex Neuron injured by XO/XA (조기해어탕(調氣解瘀湯)이 XO/XA에 의해 손상(損傷)된 대뇌피질(大腦皮質) 신경세포(神經細胞)에 미치는 영향(影響))

  • Lee Yong-Keun;Kang Hyung-Won;Lyu, Yeoung-Su
    • Journal of Oriental Neuropsychiatry
    • /
    • v.10 no.2
    • /
    • pp.29-45
    • /
    • 1999
  • As the average life span has been lengthened and the rate of senile population has been raised, chronic degenerative diseases incident to aging have been increased rapidly and become a social problem. With this social background, recently, oxygen radicals(OR) have toxic effects on Central Nervous System and Peripheral Nervous System and cause neuropathy such as Parkinson's Disease, Alzheimer Disease. The purpose of this study is to examine the toxic effects caused by Xanthine Oxidase(XO) and the effects of herbal extracts such as Jokihaeatang(JHT) on the treatment of the toxic effects. For this purpose, experiments with the cultured cell from the cerebrums of new born mice were done. The results of these experiments were as follows. 1. X0, an oxygen radical, decreased the survival rate of the cultured cells on NR assay, MTT assay and amount of neurofilaments and increased the amount of lipid peroxidation. 2. JHT have efficacy of increasing the amount of neurofilaments.

  • PDF

Assessment of Heavy Metal Effects on the Freshwater Microalga, Chlorella vulgaris, by Chlorophyll Fluorescence Analysis (엽록소형광분석을 이용한 담수산 클로렐라(Chlorella vulgaris)에 미치는 중금속의 영향 평가)

  • Oh, Soon-Ja;Koh, Seok-Chan
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1591-1600
    • /
    • 2015
  • The response of the freshwater microalga, Chlorella vulgaris, to heavy metal stress was examined based on chlorophyll fluorescence analysis to assess the toxic effects of heavy metals in freshwater ecosystems. When toxic effects were analyzed using regular chlorophyll fluorescence analysis, photosystem II activity($F_v/F_m$) decreased significantly when exposed to $Cu^{2+}$ and $Hg^{2+}$ for 12 h, and decreased in the order of $Hg^{2+}>Cu^{2+}>Cd^{2+}>Ni^{2+}$ when exposed for 24h. The effective photochemical quantum yield(${\phi}{\prime}_{PSII}$), chlorophyll fluorescence decrease ratio($R_{Fd}$), minimal fluorescence yield($F_o$), and non-photochemical quenching(NPQ), but not photochemical quenching(qP), responded sensitively to $Hg^{2+}$, $Cu^{2+}$, and $Cd^{2+}$. These results suggest that $F_v/F_m$, as well as ${\phi}{\prime}_{PSII}$, $R_{Fd}$, $F_o$, and NPQ could be used to assess the effects of heavy metal ions in freshwater ecosystems. However, because many types of heavy metal ions and toxic compounds co-occur under natural conditions, it is difficult to assess heavy metal toxicity in freshwater ecosystems. When Chlorella was exposed to heavy metal ions for 12 or 24h, $F_v/F_m$ and maximal fluorescence yield($F_m$) changed in response to $Hg^{2+}$ and $Cu^{2+}$ based on image analysis. However, assessing quantitatively the toxic effects of several heavy metal ions is challenging.

몇 가지 PBTs (Persistent, Bioaccumulative, Toxic Chemicals)가 생태계 곤충에 미치는 영향

  • Lee Seun Yeong;Kim Yong Gyun
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2002.11a
    • /
    • pp.123-126
    • /
    • 2002
  • Pollutants that are persistent, bioaccurnulative, and toxic have been linked to numerous adverse effects in human and animals, PBTs include heavy metals, polychlorinated biphenyls (PCBs), dioxins, polycyclic aromatic compounds (PACs) in addition to pesticides. This study focuses on toxic effects of the PBTs except pesticides on insects. Eight PBTs were selected from subgroups: three heavy metals (Pb, Hg, and Cd), two PCB mixtures (Aroclor mixtures 1 and 2), 2,3,7,8-tetrachlorodibenzo-p-dioxin, two monophenols (4-octylphenol and 4-nonylphenol), and tetrabutyltin, Beet armyworm, Spodoptera exigua, was used as test target insect species. Three physiological markers (metamorphosis, immune reaction, and follicle patency) were assessed in each exposure to different doses of the PCBs. Heat-shock proteins as molecular markers were also analyzed in response to the PCBs. All tested PBTs were toxic to metamorphosis from larvae to pupae when they were applied with diet. Two PCB mixtures were the most toxic compounds in this assay by giving significant toxicity at 0.005 ppm, while others had from 10 to 1000 ppm. Dioxin (0.1 ppb), tetrabutyltin (0.1 ppb), Pb (10 ppb), and Hg (0,01 ppb) were potent to inhibit immune reactions analyzed by inducing phenoloxidase activity and blocked phospholipase $A_2$ enzyme, Tetrabutyltin and dioxin significantly induced follicle cell patency, but their effects were lower than that of endogenous juvenile hormone, Dioxin, Pb, Hg, and Cd could induce the expression of heat shock proteins that were detected by immunoblotting against human HSP70 monoclonal antibody. HSP78 and HSP80 were upregulated in response to the PBTs. This expression was detected from the fat body and epidermis at as fast as 4h after injection. All these results clearly suggest that PBTs give significant ecotoxicity to insects that are valuable organisms in our environment.

  • PDF

Effects of Ginseng on the Drug Metabolizing Enzymes (인삼이 간의 약물 대사 효소에 미치는 영향)

  • 김낙두
    • YAKHAK HOEJI
    • /
    • v.28 no.1
    • /
    • pp.29-33
    • /
    • 1984
  • The paper aimed to review the influences of ginseng on the metabolism of foreign substances and on the activity of hepatic drug metabolizing enzyme system in mouse or rat liver. It has been known that ginseng components reduces the motality rates and the toxic effects induced by foreign materials. Chronic pretreatment of mouse or rat with ginseng extract fractions or saponin caused the increase in the metabolism of foreign materials and the activity of drug metabolizing enzymes, such as cytochrome $P_{450}$, NADPH cytochrome C reductase and glucuronyl S-transferase in liver. Thus, it may be concluded that decrease in toxic effect of foreign substances by ginseng pretreatment may be partly related to the induction of drug metabolizing enzymes in liver.

  • PDF

Environmental Pollution and Gene Expression: Dioxin

  • Kim, Ki-Nam;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.78-86
    • /
    • 2005
  • Dioxins, especially 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD or dioxin), are ubiquitous environmental contaminants. TCDD is known that it has toxic effects in animals and humans, including chloracne, immune, reproductive and developmental toxicities, carcinogenicity, wasting syndrome and death. TCDD induces a broad spectrum of biological responses, including disruption of normal hormone signaling pathways, reproductive and developmental defects, immunotoxicity, liver damage, wasting syndrome and cancer. Many researches showed that TCDD induces gene expression of transcriptional factors related cell proliferation, signal transduction, immune system and cell cycle arrest at molecular and cellular levels. These toxic actions of TCDD are usually mediated with AhR (receptor, resulted from cell culture, animal and clinical studies). cDNA microarray can be used as a highly sensitive and informative marker for toxicity. Additionally, microarray analysis of dioxin-toxicity is able to provide an opportunity for the development of candidate bridging biomarkers of dioxin-toxicity. Through microarray technology, it is possible to understand the therapeutic effects of agonists within the context of toxic effects, classify new chemicals as to their complete effects on biological systems, and identify environmental factors that may influence safety.

Toxicological Profiles of Poisonous, Edible, and Medicinal Mushrooms

  • Jo, Woo-Sik;Hossain, Md. Akil;Park, Seung-Chun
    • Mycobiology
    • /
    • v.42 no.3
    • /
    • pp.215-220
    • /
    • 2014
  • Mushrooms are a recognized component of the human diet, with versatile medicinal properties. Some mushrooms are popular worldwide for their nutritional and therapeutic properties. However, some species are dangerous because they cause toxicity. There are many reports explaining the medicinal and/or toxic effects of these fungal species. Cases of serious human poisoning generally caused by the improper identification of toxic mushroom species are reported every year. Different substances responsible for the fatal signs and symptoms of mushroom toxicity have been identified from various poisonous mushrooms. Toxicity studies of mushroom species have demonstrated that mushroom poisoning can cause adverse effects such as liver failure, bradycardia, chest pain, seizures, gastroenteritis, intestinal fibrosis, renal failure, erythromelalgia, and rhabdomyolysis. Correct categorization and better understanding are essential for the safe and healthy consumption of mushrooms as functional foods as well as for their medicinal use.

Toxic Effect of Combination of Buprofezin and Carbaryl in Rats (Buprofezin과 Carbaryl의 복합독성에 관한 연구)

  • 홍사욱;이종우
    • Environmental Analysis Health and Toxicology
    • /
    • v.7 no.3_4
    • /
    • pp.17-35
    • /
    • 1992
  • In this study, it was examined the toxic effects of combination of buprofezin and carbaryl on hematological, biological and enzymetic parameters in rats. The administration of buprofezin or carbaryl both induced the tissue content of cytochrome P-450 and furthermore, the combination of the both increased significantly the liver content of cytochrome P-450 in rat. But cytochrome P-450 and NADPH -cytochrome c reductase activities in kidney were slightly increased. Administration of carbaryl and combination of the both also significantly increased hepatic aniline hydroxylase activity. In addition, in the combination group, glucose-6-phosphatase and lipid peroxidase activities were changed in the rat liver. Furthermore, cholinesterase was inhibited in rats treated with carbaryl or the combination of buprofezin and carbaryl. The above results suggested that the combined administration of buprofezin and carbaryl can induce more toxic effects than the single administration of buprofezin or carbaryl.

  • PDF

Evaluation of the sub-lethal toxicity of Cu, Pb, bisphenol A and polychlorinated biphenyl to the marine dinoflagellate Cochlodinium polykrikoides

  • Ebenezer, Vinitha;Ki, Jang-Seu
    • ALGAE
    • /
    • v.27 no.1
    • /
    • pp.63-70
    • /
    • 2012
  • Algae are sensitive to a wide range of pollutants, and are effective bioindicators in ecotoxicity assessments. Here, we evaluated the sub-lethal sensitivity of the marine dinoflagellate Cochlodinium polykrikoides upon exposure to copper (Cu), lead (Pb), bisphenol A (BPA), and Aroclor 1016 (polychlorinated biphenyl, PCB). Toxic effects were assessed by observations of the reduction in cell counts and chlorophyll a levels after exposure to each toxicant. C. polykrikoides displayed dose-dependent, sigmoidal responses when exposed to the tested chemicals. $EC_{50}$-72 h values for Cu, Pb, BPA, and PCB were 12.74, 46.70, 68.15, and $1.07mg\;L^{-1}$, respectively. PCB, which is an endocrine-disrupting chemical, was the most sensitive, proving its toxic effect on the dinoflagellate. This study provides baseline data on the toxic effects of commonly used heavy metals and endocrine-disrupting chemicals to a marine dinoflagellate.

Mathematical Evaluation of Response Behaviors of Indicator Organisms to Toxic Materials (지표생물의 독성물질 반응 행동에 대한 수리적 평가)

  • Chon, Tae-Soo;Ji, Chang-Woo
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.4
    • /
    • pp.231-245
    • /
    • 2008
  • Various methods for detecting changes in response behaviors of indicator specimens are presented for monitoring effects of toxic treatments. The movement patterns of individuals are quantitatively characterized by statistical (i.e., ANOVA, multivariate analysis) and computational (i.e., fractal dimension, Fourier transform) methods. Extraction of information in complex behavioral data is further illustrated by techniques in ecological informatics. Multi-Layer Perceptron and Self-Organizing Map are applied for detection and patterning of response behaviors of indicator specimens. The recent techniques of Wavelet analysis and line detection by Recurrent Self-Organizing Map are additionally discussed as an efficient tool for checking time-series movement data. Behavioral monitoring could be established as new methodology in integrative ecological assessment, tilling the gap between large-scale (e.g., community structure) and small-scale (e.g., molecular response) measurements.

Effects of Physalis peruviana L on Toxicity and Lung Cancer Induction by Nicotine Derived Nitrosamine Ketone in Rats

  • El-Meghawry El-Kenawy, Ayman;Elshama, Said Said;Osman, Hosam-Eldin Hussein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5863-5868
    • /
    • 2015
  • Nicotine-derived nitrosamine ketone (NNK) is considered a key tobacco smoke carcinogen inducing lung tumors. Physalis peruviana L (harankash) is considered one plant with marked health benefits. This study aimed to evaluate Physalis peruviana L effect on the toxic effect of NNK induced lung cancer in the rats by using pulmonary histopathological, immunohistochemical and DNA flow cytometric analyses. Sixty adult male rats were divided into four groups, each consisting of fifteen animals. The first group received saline, the second received two successive toxic doses of NNK only while the third received two successive toxic doses of NNK with a single daily dose of Physalis peruviana L. The fourth group received a single daily dose of Physalis peruviana L only. Toxic doses of NNK induced hyperplasia and adenocarcinoma in the lung and positive immunoreactivity for Ki-67 and p53 staining with disturbance of the lung DNA content. Administration of Physalis peruviana L with NNK led to a mild pulmonary hyperplasia and weak expression of Ki-67 and p53 with an improvement in the lung DNA content. Physalis peruviana L may protect against NNK induced lung carcinogenesis due to its antioxidant and anti-proliferative effects.