• Title/Summary/Keyword: Tower base

Search Result 93, Processing Time 0.019 seconds

Ministry of Taxation Tower in Baku, Azerbaijan: Turning Away from Prescriptive Limitations

  • Choi, Hi Sun;Ihtiyar, Onur;Sundholm, Nickolaus
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.377-386
    • /
    • 2020
  • Beginning a few decades ago, Baku, the capital city of Azerbaijan, has experienced a dramatic construction boom that is revitalizing its skyline. The expansive growth looks to uphold the historic past of Baku as a focal point within the Caspian Sea Region while also evoking aspirations for a city of the future. With superstructure complete and interiors progressing, the Ministry of Taxation (MOT) tower is the latest addition to the city, with its stacked cubes twisting above a multi-level podium at the base. Each cube is separated by column-free green roof terraces, creating unique parametric reveals of the developing surroundings. Aside from MOT's stunning shape, its geolocation resulted in unusually high wind loads coupled with high seismic hazards for a tower of its height. In addition, limitations on possible structural systems required stepping away from a typical prescriptive code-based approach into one that utilized Performance-Based Design (PBD) methods. This paper presents the numerous structural challenges and innovations that allowed the design of a new icon to be realized.

Capacity of a transmission tower under downburst wind loading

  • Mara, T.G.;Hong, H.P.;Lee, C.S.;Ho, T.C.E.
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.65-87
    • /
    • 2016
  • The wind velocity profile over the height of a structure in high intensity wind (HIW) events, such as downbursts, differs from that associated with atmospheric boundary layer (ABL) winds. Current design codes for lattice transmission structures contain only limited advice on the treatment of HIW effects, and structural design is carried out using wind load profiles and response factors derived for ABL winds. The present study assesses the load-deformation curve (capacity curve) of a transmission tower under modeled downburst wind loading, and compares it with that obtained for an ABL wind loading profile. The analysis considers nonlinear inelastic response under simulated downburst wind fields. The capacity curve is represented using the relationship between the base shear and the maximum tip displacement. The results indicate that the capacity curve remains relatively consistent between different downburst scenarios and an ABL loading profile. The use of the capacity curve avoids the difficulty associated with defining a reference wind speed and corresponding wind profile that are adequate and applicable for downburst and ABL winds, thereby allowing a direct comparison of response under synoptic and downburst events. Uncertainty propagation analysis is carried out to evaluate the tower capacity by considering the uncertainty in material properties and geometric variables. The results indicated the coefficient of variation of the tower capacity is small compared to those associated with extreme wind speeds.

Evaluation of Structural Performance of Natural Draught Cooling Tower According to Shell Geometry Using Wind Damage Analysis - Part II : Two-Shell Geometry (풍하중에 의한 손상해석을 이용한 기하형상에 따른 자연 습식 냉각탑의 구조성능 평가 - Part II : Two-Shell 기하형상)

  • Lee, Sang-Yun;Noh, Sam-Young
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.49-58
    • /
    • 2017
  • The result of the previous work leads to the idea that the inner area of the hyperbolic shell generator should be minimized for the cooling tower with higher first natural frequency. In this study the inner area of the hyperbolic shell generator was graphically established under varying height of the throat and angle of the base lintel. From the graph, several shell geometries were selected and analysed in the aspect of the natural frequency. Three representative towers reinforced differently due to different first natural frequencies were analysed non-linearly and evaluated using a damage indicator based on the change of natural frequencies. The results demonstrated that the damage behaviour of the tower reinforced higher due to a lower first natural frequency was not necessarily advantageous than the others.

Investigation of 3-D dynamic wind loads on lattice towers

  • Zou, Lianghao;Liang, Shuguo;Li, Q.S.;Zhao, Lin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.11 no.4
    • /
    • pp.323-340
    • /
    • 2008
  • In this paper, the along-wind, across-wind as well as torsional dynamic wind loads on three kinds of lattice tower models are investigated using the base balance technique in a boundary layer wind tunnel. The models were specially designed, and their fundamental frequencies in the directions of the three principal axes are still in the frequency range of the spectra of wind loads on lattice towers. In order to clear contaminations to the spectra of wind loads induced by model resonance, the generalized force spectra of the first mode of the models in along-wind, across-wind and torsional directions were derived based on measured base moments of the models. The RMS generalized force coefficients are also obtained by removing the contributions of model resonance. Finally, the characteristics of the 3-D dynamic wind loads, especially those of the across-wind dynamic loads, on the three kinds of lattice towers are presented and discussed.

Influence of second order wave excitation loads on coupled response of an offshore floating wind turbine

  • Chuang, Zhenju;Liu, Shewen;Lu, Yu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.367-375
    • /
    • 2020
  • This paper presents an integrated analysis about dynamic performance of a Floating Offshore Wind Turbine (FOWT) OC4 DeepCwind with semi-submersible platform under real sea environment. The emphasis of this paper is to investigate how the wave mean drift force and slow-drift wave excitation load (Quadratic transfer function, namely QTF) influence the platform motions, mooring line tension and tower base bending moments. Second order potential theory is being used for computing linear and nonlinear wave effects, including first order wave force, mean drift force and slow-drift excitation loads. Morison model is utilized to account the viscous effect from fluid. This approach considers floating wind turbine as an integrated coupled system. Two time-domain solvers, SIMA (SIMO/RIFLEX/AERODYN) and FAST are being chosen to analyze the global response of the integrated coupled system under small, moderate and severe sea condition. Results show that second order mean drift force and slow-drift force will drift the floater away along wave propagation direction. At the same time, slow-drift force has larger effect than mean drift force. Also tension of the mooring line at fairlead and tower base loads are increased accordingly in all sea conditions under investigation.

Geodetic monitoring on onshore wind towers: Analysis of vertical and horizontal movements and tower tilt

  • Canto, Luiz Filipe C.;de Seixas, Andrea
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.309-328
    • /
    • 2021
  • The objective of this work was to develop a methodology for geodetic monitoring on onshore wind towers, to ascertain the existence of displacements from object points located in the tower and at the foundation's base. The geodesic auscultation was carried out in the Gravatá 01 and 02 wind towers of the Eólica Gravatá wind farm, located in the Brazilian municipality of Gravatá-PE, using a stable Measurement Reference System. To verify the existence of displacements, pins were implanted, with semi-spherical surfaces, at the bases of the towers being monitored, measured by means of high-precision geometric leveling and around the Gravatá 02 tower, concrete landmarks, iron rods and reflective sheets were implanted, observed using geodetic/topographic methods: GNSS survey, transverse with forced centering, three-dimensional irradiation, edge measurement method and trigonometric leveling of unilateral views. It was found that in the Gravatá 02 tower the average rays of the circular sections of the transverse welds (ST) were 1.8431 m ± 0.0005 m (ST01) and 1.6994 m ± 0.0268 m of ST22, where, 01 and 22 represent the serial number of the transverse welds along the tower. The average calculation of the deflection between the coordinates of the center of the circular section of the ST22 and the vertical reference alignment of the ST1 was 0°2'39.22" ± 2.83" in the Northwest direction and an average linear difference of 0.0878 m ± 0.0078 m. The top deflection angle was 0°8'44.88" and a linear difference of ± 0.2590 m, defined from a non-linear function adjusted by Least Squares Method (LSM).

Effects of Perimeter to Core Connectivity on Tall Building Behavior

  • Besjak, Charles;Biswas, Preetam;Petrov, Georgi I.;Streeter, Matthew;Devin, Austin
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • The Pertamina Energy Tower (PET) and Manhattan West North Tower (MWNT) are two supertall towers recently designed and engineered by Skidmore, Owings & Merrill (SOM). The structural system for both buildings consists of an interior reinforced concrete core and a perimeter moment frame system, which is primarily structural steel. As is typical for tall towers with both concrete and steel elements, staged construction analysis was performed in order to account for the long term effects of creep and shrinkage, which result in differential shortening between the interior concrete core and steel perimeter frame. The particular design of each tower represents two extremes of behavior; PET has a robust connection between the perimeter and core in the form of three sets of outriggers, while the perimeter columns of MWNT do not reach the ground, but are transferred to the core above the base. This paper will present a comparison of the techniques used during the analysis and construction stages of the design process with the goal of understanding the differences in structural behavior of these two building systems in response to the long term effects of creep and shrinkage. This paper will also discuss the design and construction techniques implemented in order to minimize the differential shortening between the interior and exterior over the lifespan of these towers.

A Quantitative Risk Analysis of Related to Tower Crane Using the FMEA (타워크레인의 정량적 위험성 평가가법에 관한 연구(FMEA 기법 위주))

  • Shim, Kyu-Hyung;Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.34-39
    • /
    • 2010
  • The purpose of this study is to suggest objective evaluation model as a plan to utilize as opportunity in establishing judgment standard of mutual inspection criteria and to upgrade inspection ability by reviewing and analyzing level of danger and importance in advance based on inspection results of inspection institutions regarding tower cranes used in construction fields. Tower crane is a mechanical device transporting construction supplies and heavy materials to places over 20~150M high from the ground for the period ranging from a short time of 2~3 months to two years after being installed in construction sites in vicinity of buildings or structures and is an important facility indispensable for construction sites. However, since use period after installation is short and professional technical ability of technicians working on-site about of tower crane is poor, systematic and quantitative safety management is not carried out As a part of researches on procedure of RBI(Risk Based Inspection) possible to apply to Knowledge Based System based on knowledge and experiences of experts as well as to tower cranes for solving these problems, quantitative RPN(Risk Priority Number) was applied to RPN utilizing technique of FMEA(Failure Mode and Effect Analyses). When general RBI 80/20 Rule was applied parts with high level of risks were found out as wire rope, hoist up/down safety device, reduction gear, and etc. However, since there are still many insufficient parts as risk analyses of tower crane were not established, it is necessary for experts with sufficient experiences and knowledge to supplement active RBI techniques and continuous researches on tower cranes by sharing and setting up data base of important information with this study as a starting point.

Seismic retrofitting of a tower with shear wall in UHPC based dune sand

  • Trabelsi, Abderraouf;Kammoun, Zied;Beddey, Aouicha
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.591-601
    • /
    • 2017
  • To prevent or limit the damage caused by earthquakes on existing buildings, several retrofitting techniques are possible. In this work, an ultra high performance concrete based on sand dune has been formulated for use in the reinforcement of a multifunctional tower in the city of Skikda in Algeria. Tests on the formulated ultra high performance concrete are performed to determine its characteristics. A nonlinear dynamic analysis, based on the "Pushover" method was conducted. The analysis allowed an optimization of the width of reinforced concrete walls used in seismic strengthening. Two types of concrete are studied, the ordinary concrete and the ultra high performance concrete. Both alternatives are compared with the reinforcement with carbon fibers and by base isolation retrofit design.

Load Measurements of 100 kW Wind Turbine (100 kW급 풍력발전기의 하중 측정)

  • Bae, Jae-Sung;Kim, Sung-One;Kyong, Nam-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.27-33
    • /
    • 2004
  • Mechanical load measurements on blade and tower of Vestas 100 kW wind turbine has been reformed in Wollyong test site, Jeju island. The experimental procedure for the measurement of wind turbine loads, such as edgewise(lead-lag) bending moment, flapwise bending moment, and tower base bending moment, has been established. The test facilities consisting of strain-gauges, telemetry and T-Mon system are installed in the wind turbine. Strain gauges are on-site calibrated against load cell prior to monitoring the wind turbine loads. Using the test setup, the loads on the components are being measured and analysed for various external conditions of the wind turbine. A set of results for near rated wind speed has been presented in this paper.