• 제목/요약/키워드: Tower Structure

검색결과 432건 처리시간 0.028초

Dynamic behavior of intake tower considering hydrodynamic damping effect

  • Uddin, Md Ikram;Nahar, Tahmina Tasnim;Kim, Dookie;Kim, Kee-Dong
    • Structural Engineering and Mechanics
    • /
    • 제82권3호
    • /
    • pp.355-367
    • /
    • 2022
  • The effect of hydrodynamic damping on intake tower is twofold: one is fluid damping and another is structural damping. Fluid damping can be derived analytically from the governing equation of the fluid-structure-interaction (FSI) problem which yields a very complicated solution. To avoid the complexity of the FSI problem water-tower system can be simplified by considering water as added mass. However, in such a system a reconsideration of structural damping is required. This study investigates the effects of this damping on the dynamic response of the intake tower, where, apart from the "no water (NW)" condition, six other cases have been adopted depending on water height. Two different cross-sections of the tower are considered and also two different damping properties have been used for each case as well. Dynamic analysis has been carried out using horizontal ground motion as input. Finally, the result shows how hydrodynamic damping affects the dynamic behavior of an intake tower with the change of water height and cross-section. This research will help a designer to consider more conservative damping properties of intake tower which might vary depending on the shape of the tower and height of water.

Energy dissipation system for earthquake protection of cable-stayed bridge towers

  • Abdel Raheem, Shehata E.;Hayashikawa, Toshiro
    • Earthquakes and Structures
    • /
    • 제5권6호
    • /
    • pp.657-678
    • /
    • 2013
  • For economical earthquake resistant design of cable-stayed bridge tower, the use of energy dissipation systems for the earthquake protection of steel structures represents an alternative seismic design method where the tower structure could be constructed to dissipate a large amount of earthquake input energy through inelastic deformations in certain positions, which could be easily retrofitted after damage. The design of energy dissipation systems for bridges could be achieved as the result of two conflicting requirements: no damage under serviceability limit state load condition and maximum dissipation under ultimate limit state load condition. A new concept for cable-stayed bridge tower seismic design that incorporates sacrificial link scheme of low yield point steel horizontal beam is introduced to enable the tower frame structure to remain elastic under large seismic excitation. A nonlinear dynamic analysis for the tower model with the proposed energy dissipation systems is carried out and compared to the response obtained for the tower with its original configuration. The improvement in seismic performance of the tower with supplemental passive energy dissipation system has been measured in terms of the reduction achieved in different response quantities. Obtained results show that the proposed energy dissipation system of low yield point steel seismic link could strongly enhance the seismic performance of the tower structure where the tower and the overall bridge demands are significantly reduced. Low yield point steel seismic link effectively reduces the damage of main structural members under earthquake loading as seismic link yield level decreases due their exceptional behavior as well as its ability to undergo early plastic deformations achieving the concentration of inelastic deformation at tower horizontal beam.

Seismic responses of transmission tower-line system under coupled horizontal and tilt ground motion

  • Wei, Wenhui;Hu, Ying;Wang, Hao;Pi, YongLin
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.635-647
    • /
    • 2019
  • Tests and theoretical studies for seismic responses of a transmission tower-line system under coupled horizontal and tilt (CHT) ground motion were conducted. The method of obtaining the tilt component from seismic motion was based on comparisons from the Fourier spectrum of uncorrected seismic waves. The collected data were then applied in testing and theoretical analysis. Taking an actual transmission tower-line system as the prototype, shaking table tests of the scale model of a single transmission tower and towers-line systems under horizontal, tilt, and CHT ground motions were carried out. Dynamic equations under CHT ground motion were also derived. The additional P-∆ effect caused by tilt motion was considered as an equivalent horizontal lateral force, and it was added into the equations as the excitation. Test results were compared with the theoretical analysis and indicated some useful conclusions. First, the shaking table test results are consistent with the theoretical analysis from improved dynamic equations and proved its correctness. Second, the tilt component of ground motion has great influence on the seismic response of the transmission tower-line system, and the additional P-∆effect caused by the foundation tilt, not only increases the seismic response of the transmission tower-line system, but also leads to a remarkable asymmetric displacement effect. Third, for the tower-line system, transmission lines under ground motion weaken the horizontal displacement and acceleration responses of transmission towers. This weakening effect of transmission lines to the main structure, however, will be decreased with consideration of tilt component.

철도역사 급수탑의 건축적 특성에 관한 연구 - 현존하는 급수탑을 중심으로 - (Architectural Characteristics of Railway Station Water Towers in Korea - Focused on the Existing Railway Station Water Towers -)

  • 김종헌;유우상;우동선
    • 건축역사연구
    • /
    • 제15권2호
    • /
    • pp.7-22
    • /
    • 2006
  • The Industrial Revolution brought a variety of new forms of structure, and as a group they are usually called 'industrial architecture'. Steam engines contributed greatly to architecture with a unique structure called 'water tower' to provide water for steam engines, especially the adoption of it. This study is to examine the changes of the building materials and architectural features of the water towers of railway stations built in the early twentieth century in South Korea. This study also attempts to describe the modern features of the industrial architecture, which did not get a chance to be noticed. Through this examination on water tower, which is a part of industrial architecture with sheer integration of function and pure geometric form, we would like to find the meaning of modern architecture in Korea. As we can see in the Korean oldest railway station water tower constructed in masonry at Yeonsan Station in 1911, early water towers were divided into the masonry machine room and the steel water tank. However, the masonry structure was soon turned into concrete structure with its formal features maintained as it was. The steel water tank was also replaced with concrete structure. As a result, while its basic structure remained, concrete structure had substituted for the every components of water tower. Concrete-built water towers were the high-tech architecture of that time and the most perfect structures built in concrete. Nevertheless, the perfection of the water tower form and the technology it attained were not transferred to other modern and contemporary architecture in South Korea. Since the subject to railway station water towers was the Japanese government, and steam engines were replaced with diesels in the midst of a complicated domestic situation after the independence, the need for water towers in railway stations disappeared and therefore, it became ignored and was difficult to look over the architectural features and values of early railway station water towers.

  • PDF

Vortex Shedding을 고려한 Tower Flange 설계 (Tower Flange Design Considering Vortex Shedding)

  • 이현주;최원호;이승구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.68-71
    • /
    • 2005
  • In the case of wind turbine design, Optimization of tower structure is very important because tower generally takes about $20\%$ of overall turbine cost. In this paper, we calculated wind loads considering vortex shedding, and optimized tower flange using the calculation results. For optimization, we used FEM to analyze structural strength of the flange and blade momentum theory to calculate wind loads.

  • PDF

Soil-structure interaction effects on seismic behavior of a hyperbolic cooling tower using three-parameter Vlasov foundation model

  • Karakas, Ali I.;Ozgan, Korhan;Daloglu, Ayse T.
    • Earthquakes and Structures
    • /
    • 제14권1호
    • /
    • pp.85-94
    • /
    • 2018
  • The paper focuses on the seismic responses of a hyperbolic cooling tower resting on soil foundation represented by the three-parameter Vlasov elastic soil model. The three-parameter soil model eliminates the necessity of field testing to determine soil parameters such as reaction modulus and shear parameter. These parameters are calculated using an iterative procedure depending on the soil surface vertical deformation profile in the model. The soil and tower system are modeled in SAP2000 structural analysis program using a computing tool coded in MATLAB. The tool provides a two-way data transfer between SAP2000 and MATLAB with the help of Open Application Programming Interface (OAPI) feature of SAP2000. The response spectrum analyses of the tower system with circular V-shaped supporting columns and annular raft foundation on elastic soil are conducted thanks to the coded tool. The shell and column forces and displacements are presented for different soil conditions and fixed raft base condition to investigate the effects of soil-structure interaction. Numerical results indicate that the flexibility of soil foundation leads to an increase in displacements but a decrease in shell membrane and column forces. Therefore, it can be stated that the consideration of soil-structure interaction in the seismic response analysis of the cooling tower system provides an economical design process.

Structural analysis and optimization of large cooling tower subjected to wind loads based on the iteration of pressure

  • Li, Gang;Cao, Wen-Bin
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.735-753
    • /
    • 2013
  • The wind load is always the dominant load of cooling tower due to its large size, complex geometry and thin-wall structure. At present, when computing the wind-induced response of the large-scale cooling tower, the wind pressure distribution is obtained based on code regulations, wind tunnel test or computational fluid dynamic (CFD) analysis, and then is imposed on the tower structure. However, such method fails to consider the change of the wind load with the deformation of cooling tower, which may result in error of the wind load. In this paper, the analysis of the large cooling tower based on the iterative method for wind pressure is studied, in which the advantages of CFD and finite element method (FEM) are combined in order to improve the accuracy. The comparative study of the results obtained from the code regulations and iterative method is conducted. The results show that with the increase of the mean wind speed, the difference between the methods becomes bigger. On the other hand, based on the design of experiment (DOE), an approximate model is built for the optimal design of the large-scale cooling tower by a two-level optimization strategy, which makes use of code-based design method and the proposed iterative method. The results of the numerical example demonstrate the feasibility and efficiency of the proposed method.

Failure analysis of a transmission tower during a microburst

  • Shehata, A.Y.;El Damatty, A.A.
    • Wind and Structures
    • /
    • 제11권3호
    • /
    • pp.193-208
    • /
    • 2008
  • This paper focuses on assessing the failure of one of the transmission towers that collapsed in Winnipeg, Canada, as a result of a microburst event. The study is conducted using a fluid-structure numerical model that was developed in-house. A major challenge in microburst-related problems is that the forces acting on a structure vary with the microburst parameters including the descending jet velocity, the diameter of the event and the relative location between the structure and the jet. The numerical model, which combines wind field data for microbursts together with a non-linear finite element formulation, is capable of predicting the progressive failure of a tower that initiates after one of its member reaches its capacity. The model is employed first to determine the microburst parameters that are likely to initiate failure of a number of critical members of the tower. Progressive failure analysis of the tower is then conducted by applying the loads associated with those critical configurations. The analysis predicts a collapse of the conductors cross-arm under a microburst reference velocity that is almost equal to the corresponding value for normal wind load that was used in the design of the structure. A similarity between the predicted modes of failure and the post event field observations was shown.

유체-구조물-지반 상호작용을 고려한 해상풍력발전기의 지진응답해석 (Earthquake Response Analysis of an Offshore Wind Turbine Considering Fluid-Structure-Soil Interaction)

  • 이진호;이상봉;김재관
    • 한국지진공학회논문집
    • /
    • 제16권3호
    • /
    • pp.1-12
    • /
    • 2012
  • 이 논문에서는 유체-구조물-지반의 상호작용을 고려한 해상풍력발전기의 지진응답해석법을 제시하였다. 풍력발전기는 tower와 그 정점에 집중된 질량으로 모델링 되었다. 이 tower는 유연한 해저지반에 기초하고 있는 튜브형 cantilever로 이상화하였다. Tower와 해수 간의 동적 상호작용, 기초와 지반간의 동적 상호작용이 고려된 유체-구조물-지반 연성계의 지배방정식은 부분구조법과 Rayleigh-Ritz방법에 의해서 유도되었다. 해수는 압축성 비점성 이상 유체로 이상화하였다. 해수로 포화된 층상지반에 놓인 footing의 동적 강성은 Thin Layer법에 의해서 계산하여 상부구조물 모델과 결합시켰다. 이 해석법을 해상풍력발전기 모델의 지진응답해석에 적용하였다. 해석 결과를 준거해와 비교해서 제안한 해석법의 타당성을 검증하였다. Tower의 유연성, 지반의 강성이 해상풍력발전기 지진거동에 미치는 영향을 분석하였다. 유체-구조물 상호작용과 지반-구조물 상호작용의 지진응답에 대한 상대적인 중요도를 비교 평가하였다.

Wind-induced response of a twin-tower structure

  • Xie, Jiming;Irwin, Peter A.
    • Wind and Structures
    • /
    • 제4권6호
    • /
    • pp.495-504
    • /
    • 2001
  • With a newly developed multi-force-balance system(MFB), a twin-tower structure was studied for its wind-induced responses. The MFB system allowed the twin towers, which were linked structurally, to be treated as a single structural system with its corresponding modes of vibration involving coupled motions of the two towers. The towers were also studied using a more conventional force balance approach in which each tower was treated as an isolated structure, i.e., as though no structural link existed. Comparison of the results reveals how the wind loads between the towers are redistributed through the structural links and the modal couplings. The results suggest that although the structural links usually have beneficial impacts on wind-induced response, they may also play a negative role if the frequency ratios of pair modes are near 1.0.