• Title/Summary/Keyword: Tower Structure

Search Result 432, Processing Time 0.028 seconds

A Simulation of Lightning Faults Reducing Effects on the 154 kV Transmission Tower by Auxiliary Grounding (보조접지선 시공에 의한 송전선로의 내뢰성 향상효과 모의)

  • Kwak, Joo-Sik;Shim, Jeong-Woon;Shim, Eung-Bo;Choi, Jong-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1843-1846
    • /
    • 1997
  • This paper describes the fault reducing effects of the 154 kV transmission tower by auxiliary grounding from the top of the tower to ground. The grounding surge impedance of the auxiliary grounding system is calculated by CDEGS(:Current Distribution Electromagnetic Interference Grounding and Soil Structure Analysis), and the critical lightning back flashover current and arcing horn dynamic characteristics are simulated by EMTP/TACS(:Electromagnetic Transient Program/Transient Analysis of Control Systems). The calculated results of total LFOR(Lightning Flashover Rate) shows that the LFOR can be reduced from 5.2(count/100km. year) to 3.4 by auxiliary grounding on the 154 kV transmission tower with one ground wire shielding system.

  • PDF

Brief description of the Design and Construction of the Burj Dubai Project, Dubai, UAE.

  • Abdelrazaq Ahmad K.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.9-14
    • /
    • 2005
  • The Burj Dubai Project will be the tallest structure ever built by man; when completed the tower will be more than 700 meter tall and more than 160 floors. The early integration of aerodynamic shaping and wind engineering considerations played a major role in the architectural massing and design of this residential tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria. This paper presents a brief overview of the structural system development and considerations of the tower and discusses the construction planning of the key structural components of the tower.

  • PDF

Ground Effect of a Rotor Blade on a Whirl Tower (훨타워 로터 블레이드의 지면효과)

  • Kang, Hee-Jung;Kim, Seung-Ho
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.74-81
    • /
    • 2011
  • A numerical simulation is performed to study the ground effect of a rotating rotor blade on a whirl tower using unstructured overset mesh. The aerodynamic change of the rotor blade by the structure around the whirl tower is also considered. The calculated results showed good agreement with the experiment for the hover performance. The ground effect of the rotor blade is investigated by comparing with the calculated results for the out of ground condition and the results of an analytic model.

Damage Simulation of Natural Draught Cooling Towers

  • Noh, S.Y.;Huh, Y.
    • Computational Structural Engineering : An International Journal
    • /
    • v.2 no.1
    • /
    • pp.25-32
    • /
    • 2002
  • Natural draught cooling towers often develop visible crack structures as consequences of progressive damage processes over their life-time. The aim of this paper is a numerical demonstration of the progressive damage process of cooling towers, representatively for the reinforced concrete structures, in order to improve the durability and extend the life-time of structures subjected to such damage processes. For the analyses, the applied material model for reinforced concrete will be briefly introduced. An existing natural draught cooling tower with a pronounced crack structure, in which this crack structure indicates the typical damage pattern of large cooling towers will be numerically simulated. The change of dynamical behavior of the structure with regard to natural frequencies, reflecting the global damage process due to the degrading stiffness of the structure in dependence of the load type and intensity, will be presented and discussed.

  • PDF

Development of Eco-friendly Electric Transmission Towers in KEPCO (환경조화형 철탑 개발)

  • Lee, Won-kyo;Mun, Sung-Duk;Shin, Kooyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.135-140
    • /
    • 2019
  • Lattice towers and tubular steel poles have been commonly used for electrical power transmission in Korea. They are durable, structurally stable, simple and can easily be constructed in limited spaces. However, residents are opposed to construct transmission lattice towers in their areas because they are not visually attractive, and electrical field occur at the transmission lines. Underground transmissions have been used instead of the traditional towers to resolve these problems, however they are not cost effective to construct and run. Therefore, we have developed eco-friendly towers that are more attractive, well blending into the surrounding environment, and much more economical than underground transmissions. There are four categories of the eco-friendly electric transmission towers about design aspects. Firstly, there is decoration type such as tree tower and ensemble tower. Tree tower looks like actual trees with leaves and branches so it blends into surroundings. Ensemble towers were designed after pair of crane birds. Those towers have decoration features and art works. Structural examination and manufacturing this type would be very similar to the conventional transmission towers. Secondly, there is arm design type such as traditional tower. Design features are added to the existing towers. As partial design can be adoptable on these types, it can easily meet height regulations and attach to conventional lattice towers and tubular steel poles. Also, these towers are more economical than others. Third category is multipurpose type such as Sail Tower. These towers have simple pole or tubular structure with features which can be used as information message board, public relations and much more. This type will face greater wind pressure because of the area of the board, also visibility must take into consideration. Lastly, there is moulding type such as arc pylon. It is different shape to the conventional towers - lattice towers and tubular steel poles. Dramatic design changes have been adapted - from a hard and static tower to a soft and curved tower. These towers will well stand out in the field. However, structural examination and manufacturing this type would be difficult and costly. Also certain towers of this type would require scaffolding or false work to construct, which will result in limitations of the construction area. This paper shows KEPCO 154 kV Sail tower in detail. KEPCO 154 kV Sail tower that is included in fabrication of sample tower and tower testing has developed and the results are presented in this paper. We hope that sail tower is also considered as a solution to have public acceptance or to create a familiar atmosphere among towers and people in coastal area.

Development of GPS Coordinates Measuring Algorithm for a Transmission Tower (송전탑 GPS 좌표측정 알고리즘 개발)

  • Kim, Seok-tae;Park, Joon-young;Lee, Jae-kyung;Choi, In-hyuk;Ham, Ji-wan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.99-105
    • /
    • 2017
  • Traditionally, the GPS coordinates of a transmission tower have been measured at the center of the tower on the ground, which usually takes dozens of minutes. However, this method often produces errors of tens of meters or sometimes demands several hours due to signal interference from the huge steel structure of the tower. To solve this problem, in this paper, a new measuring method for GPS coordinates of steel towers is proposed. First, instead of measuring the center of a tower, four GPS coordinates of the edges of the tower are obtained by using a measuring device with three GPS modules, and then are averaged to find the center of the tower. When a measured value is deviated considerably by signal interference, a newly proposed algorithm filters out such an inaccurate coordinate, effectively calculating the center of the tower by using other edge coordinates. Through field tests, it was confirmed that this new algorithm could improve the task efficiency and its measuring accuracy for GPS coordinates in a GPS interference environment.

A Model on the Stability Analysis of Supporting Structure of Climbing-Type Tower Cranes (상승식 타워크레인 지지구조의 안정성 검토 모델)

  • Ho, Jong-Kwan;Kim, Ah-Young;Kim, Sun-Kuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.2
    • /
    • pp.190-198
    • /
    • 2008
  • Recently construction equipments have been used in line with building the structures that have become taller, larger and complex. And as the works at the elevated level for apartment and residential-commercial building projects have been on the rise, the number of tower cranes mobilized tends to be increased too. Due to such an increase in using the equipment serves the critical factor for the project management. The climbing-type tower crane, which increases its height following the structure, has been increased and the need for selecting the optimal model has been increasingly Important in securing the stability. The study hereby proposes the model to evaluate the stability of the climbing-type tower crane. The model was designed to assist in selecting the type of crane as well as in developing the design of Collar comprising the 3 types of support member, evaluating the stability and designing the embed. The model proposed is expected to make commitment in selecting the optimal type of equipment and evaluating the support member and embed for enhancing the stability, thereby ultimately enabling to implement the prefect in efficient way.

Foundation Design the 151 story Incheon Tower in Reclamation Area

  • Abdelrazaq, Ahmad;Badelow, Frances;Kim, Sung-Ho;Park, Yung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.157-171
    • /
    • 2009
  • A 151 storey super high-rise building located in an area of reclaimed land constructed over soft marine clay in Songdo, Korea is currently under design. This paper describes the design process of the foundation system of the supertall tower, which is required to support the large building vertical and lateral loads and to restrain the horizontal displacement due to wind and seismic forces. The behaviour of the foundation system due to these loads and foundation stiffness influence the design of the building super structure, displacement of the tower, as well as the raft foundation design. Therefore, the design takes in account the interactions between soil, foundation and super structure, so as to achieve a safe and efficient building performance. The site lies entirely within an area of reclamation underlain by up to 20m of soft to firm marine silty clay, which overlies residual soil and a profile of weathered rock. The nature of the foundation rock materials are highly complex and are interpreted as possible roof pendant metamorphic rocks, which within about 50m from the surface have been affected by weathering which has reduced their strength. The presence of closely spaced joints, sheared and crushed zones within the rock has resulted in deeper areas of weathering of over 80m present within the building footprint. The foundation design process described includes the initial stages of geotechnical site characterization using the results of investigation boreholes and geotechnical parameter selection, and a series of detailed two- and three-dimensional numerical analysis for the Tower foundation comprising over 172 bored piles of varying length. The effect of the overall foundation stiffness and rotation under wind and seismic load is also discussed since the foundation rotation has a direct impact on the overall displacement of the tower.

  • PDF

In-construction vibration monitoring of a super-tall structure using a long-range wireless sensing system

  • Ni, Y.Q.;Li, B.;Lam, K.H.;Zhu, D.P.;Wang, Y.;Lynch, J.P.;Law, K.H.
    • Smart Structures and Systems
    • /
    • v.7 no.2
    • /
    • pp.83-102
    • /
    • 2011
  • As a testbed for various structural health monitoring (SHM) technologies, a super-tall structure - the 610 m-tall Guangzhou Television and Sightseeing Tower (GTST) in southern China - is currently under construction. This study aims to explore state-of-the-art wireless sensing technologies for monitoring the ambient vibration of such a super-tall structure during construction. The very nature of wireless sensing frees the system from the need for extensive cabling and renders the system suitable for use on construction sites where conditions continuously change. On the other hand, unique technical hurdles exist when deploying wireless sensors in real-life structural monitoring applications. For example, the low-frequency and low-amplitude ambient vibration of the GTST poses significant challenges to sensor signal conditioning and digitization. Reliable wireless transmission over long distances is another technical challenge when utilized in such a super-tall structure. In this study, wireless sensing measurements are conducted at multiple heights of the GTST tower. Data transmission between a wireless sensing device installed at the upper levels of the tower and a base station located at the ground level (a distance that exceeds 443 m) is implemented. To verify the quality of the wireless measurements, the wireless data is compared with data collected by a conventional cable-based monitoring system. This preliminary study demonstrates that wireless sensing technologies have the capability of monitoring the low-amplitude and low-frequency ambient vibration of a super-tall and slender structure like the GTST.

Uncertainty reduction of seismic fragility of intake tower using Bayesian Inference and Markov Chain Monte Carlo simulation

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • The fundamental goal of this study is to minimize the uncertainty of the median fragility curve and to assess the structural vulnerability under earthquake excitation. Bayesian Inference with Markov Chain Monte Carlo (MCMC) simulation has been presented for efficient collapse response assessment of the independent intake water tower. The intake tower is significantly used as a diversion type of the hydropower station for maintaining power plant, reservoir and spillway tunnel. Therefore, the seismic fragility assessment of the intake tower is a pivotal component for estimating total system risk of the reservoir. In this investigation, an asymmetrical independent slender reinforced concrete structure is considered. The Bayesian Inference method provides the flexibility to integrate the prior information of collapse response data with the numerical analysis results. The preliminary information of risk data can be obtained from various sources like experiments, existing studies, and simplified linear dynamic analysis or nonlinear static analysis. The conventional lognormal model is used for plotting the fragility curve using the data from time history simulation and nonlinear static pushover analysis respectively. The Bayesian Inference approach is applied for integrating the data from both analyses with the help of MCMC simulation. The method achieves meaningful improvement of uncertainty associated with the fragility curve, and provides significant statistical and computational efficiency.