• Title/Summary/Keyword: Tower Shadow

Search Result 13, Processing Time 0.032 seconds

Evaluation of Thrust Dynamic Load under Tower Shadow in Wind Turbine below the Rated Wind Speed (정격풍속 이하에서 풍력터빈의 타워 섀도 추력 동하중 개발)

  • Lim, Chae-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.993-1002
    • /
    • 2022
  • This paper relates to a method of modeling the thrust dynamic load caused by the thrust variation occurring on the blade due to the tower shadow below the rated wind speed. A method that uses thrust coefficient is presented by introducing "tower shadow coefficient of thrust variation". For a 2MW wind turbine, the values of "tower shadow coefficient of thrust variation" are calculated and analyzed at wind speeds below the rated. The dynamic load model of thrust under tower shadow is evaluated in Matlab/Simulink using the obtained "tower shadow coefficient of thrust variation" and thrust coefficient. It shows that the thrust variations acting on the three blades by the tower shadow can be expressed using both the thrust coefficient and the introduced "tower shadow coefficient of thrust variation".

Analysis of the Effect of Met Tower Shadow using Computational Fluid Dynamics (전산유체역학을 이용한 풍황탑 차폐효과 해석)

  • Kim, Taesung;Rhee, Huinam;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.35.1-35.1
    • /
    • 2011
  • When the wind speed is measured by the met-mast sensor it is distorted due to the shadow effect of tower. In this paper the tower shadow effect is analyzed by a computational fluid dynamics code. First three dimensional modeling and flow analysis of the met-mast system were performed. The results were compared with the available experimental wind-tunnel test data to confirm the validity of the meshes and turbulence model. Two-dimensional model was then developed based on the three-dimensional works and experimental data. 2D analysis for various Reynolds numbers and turbulence strengths were then performed to establish the tower shadow effect database, which can be utilized as correction factors for the measured wind energy.

  • PDF

Along-wind simplified analysis of wind turbines through a coupled blade-tower model

  • Spagnoli, Andrea;Montanari, Lorenzo
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.589-608
    • /
    • 2013
  • A model is proposed to analyse the along-wind dynamic response of upwind turbines with horizontal axis under service wind conditions. The model takes into account the dynamic coupling effect between rotor blades and supporting tower. The wind speed field is decomposed into a mean component, accounting for the well-known wind shear effect, and a fluctuating component, treated through a spectral approach. Accordingly, the so-called rotationally sampled spectra are introduced for the blades to account for the effect of their rotating motion. Wind forces acting on the rotor blades are calculated according to the blade element momentum model. The tower shadow effect is also included in the present model. Two examples of a large and medium size wind turbines are modelled, and their dynamic response is analysed and compared with the results of a conventional static analysis.

Numerical Study of Rotor-Tower Interaction for Horizontal Axis Wind Turbine (수평축 풍력터빈의 로터-타워 공력 간섭현상에 대한 수치적 연구)

  • Kim, Jae-Won;Yu, Dong-Ok;Kwon, Oh-Joon
    • Journal of Wind Energy
    • /
    • v.2 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • In the present study, numerical unsteady simulations of the NREL Phase VI wind turbine in downwind operation conditions were conducted to investigate rotor-tower interaction. The calculations were performed using an unstructured mesh, incompressible Reynolds-averaged Navier-Stokes flow solver. To capture the unsteady effects associated with the tower shadow between the rotor blades and the tower, the wind turbine was modelled including the rotor, tower, hub, and nacelle. The present results generally showed good agreements with available experimental data. At the lowest wind speed, the pressure distribution was characterized by a complete collapse of the suction peak on the blade when the blade passes through the tower wake. It was found that unsteady effects play a significant role in the response of the blades.

PMSG Wind Turbine Simulation under the consideration of real characteristics (PMSG 풍력 터빈의 특성을 고려한 발전 시스템 시뮬레이션)

  • Sim, Junbo;Kim, Myungho;Park, Kihyeon;Han, Kyungseop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.182.2-182.2
    • /
    • 2010
  • A various algorism has been studied to extract possibly every energy from a wind turbine in conjunction with the increase of concern about wind power system. In order to verify these control algorism, it is essential to make the most similar conditions to the real wind turbine's environment. Therefore, using separately excited DC motor a wind turbine the most similar to the real turbine is simulated. Tower shadow effect and Wind shear effect are considered as well as inertia emulation. For the control of Back-to-Back Converter Vector current control methods and space vector pulse width modulation are used and for reducing THD of grid current LCL filter is considered. This simulation results verified the energy produced by wind all flows into the utility under the consideration of the characteristics of a wind turbine. The result of this paper is expected to be used as a basic material for analyzing the characteristics of the wind turbine generator.

  • PDF

Aerodynamic loads and aeroelastic responses of large wind turbine tower-blade coupled structure in yaw condition

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1021-1040
    • /
    • 2015
  • An effective method to calculate aerodynamic loads and aeroelastic responses of large wind turbine tower-blade coupled structures in yaw condition is proposed. By a case study on a 5 MW large wind turbine, the finite element model of the wind turbine tower-blade coupled structure is established to obtain the modal information. The harmonic superposition method and modified blade-element momentum theory are used to calculate aerodynamic loads in yaw condition, in which the wind shear, tower shadow, tower-blade modal and aerodynamic interactions, and rotational effects are fully taken into account. The mode superposition method is used to calculate kinetic equation of wind turbine tower-blade coupled structure in time domain. The induced velocity and dynamic loads are updated through iterative loop, and the aeroelastic responses of large wind turbine tower-blade coupled system are then obtained. For completeness, the yaw effect and aeroelastic effect on aerodynamic loads and wind-induced responses are discussed in detail based on the calculating results.

Wind Turbine Simulators Considering Turbine Dynamic Characteristics (터빈의 동특성을 고려한 풍력 터빈 시뮬레이터)

  • Park, Hong-Geuk;Abo-Khalil, Ahmed. G.;Lee, Dong-Choon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.617-624
    • /
    • 2008
  • This paper proposes design and implementation of wind turbine simulators which incorporate the turbine dynamic characteristics. At first, the turbine output characteristic in steady state is modelled as a function of wind speed and then dynamic characteristics are modelled such as pitch angle control, torsional vibration, tower shadow effect, wind shear effect, and inertia effect. In addition, a wind speed simulator is developed which can generate the real wind speed pattern. The wind turbine simulator is implemented with 3[kW] M-G set(cage-type induction motor coupled with doubly-fed induction generator) at laboratory.

An Investigation on Thrust Properties under Wind Shear for an On-Shore 2 MW Wind Turbine (윈드 쉬어에 의한 2MW급 육상용 풍력터빈의 추력 특성 확인)

  • Lim, Chae Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.14-18
    • /
    • 2016
  • Multi-MW wind turbines have very large blades over 40~50 m in length. Some factors like wind shear and tower shadow make an effect on asymmetric loads on the blades. Larger asymmetric loads are produced as the length of blade is getting longer. In this paper, a 2 MW on-shore wind turbine is considered and variations of thrust on 3 blades and rotor hub under wind shear are calculated by using a commercial Bladed S/W and dynamic properties of the thrust variations are investigated. It is shown that the amplitude of the asymmetric thrust on each blade under wind shear is getting larger as the wind speed increases, the frequency of the thrust variation on each blade is same as the one of rotor speed, and the frequency of the thrust variation at rotor hub is 3 times as high as the one of rotor speed.

Wind Turbine Simulators for Control Performance Test of DFIG

  • Abo-Khalil, Ahmed;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.192-194
    • /
    • 2007
  • This paper proposes a new wind turbine simulator using a squirrel cage induction for control performance test of DFIG (doubly-fed induction generator). The turbine static characteristics are modeled using the relation between the turbine torque versus the wind speed and the blade pitch angle. The turbine performance is subjected to a real wind speed pattern by modeling the wind speed as a sum of harmonics with a wide range of frequency. The turbine model includes the effect of the tower shadow and wind shear. A pitch angle controller is designed and used to protect the coupled generator by limiting the turbine speed to the maximum value. Experimental results are provided for a 3[kW] wind turbine simulator at laboratory.

  • PDF

Individual Pitch Control of NREL 5MW Wind Turbine in a Transition Region (NREL 5MW 풍력터빈의 천이영역에서의 개별피치제어)

  • Nam, Yoonsu;La, Yo Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.210-216
    • /
    • 2013
  • Rotor blades experience mechanical loads caused by the turbulent wind shear and an impulse-like wind due to the tower shadow effect. These mechanical loads shorten the life of wind turbine. As the size of wind turbine gets bigger, a control system design for mitigating mechanical loads becomes more important. In this paper, individual pitch control(IPC) for the mechanical loads reduction of rotor blades in a transition wind speed region is introduced, and simulation results verifying IPC performance are discussed.