• 제목/요약/키워드: Tower Ground

검색결과 183건 처리시간 0.027초

Seismic response and failure analyses of pile-supported transmission towers on layered ground

  • Pan, Haiyang;Li, Chao;Tian, Li
    • Structural Engineering and Mechanics
    • /
    • 제76권2호
    • /
    • pp.223-237
    • /
    • 2020
  • Transmission towers have come to represent one of the most important infrastructures in today's society, which may suffer severe earthquakes during their service lives. However, in the conventional seismic analyses of transmission towers, the towers are normally assumed to be fixed on the ground without considering the effect of soil-structure interaction (SSI) on the pile-supported transmission tower. This assumption may lead to inaccurate seismic performance estimations of transmission towers. In the present study, the seismic response and failure analyses of pile-supported transmission towers considering SSI are comprehensively performed based on the finite element method. Specifically, two detailed finite element (FE) models of the employed pile-supported transmission tower with and without consideration of SSI effects are established in ABAQUS analysis platform, in which SSI is simulated by the classical p-y approach. A simulation method is developed to stochastically synthesize the earthquake ground motions at different soil depths (i.e. depth-varying ground motions, DVGMs). The impacts of SSI on the dynamic characteristic, seismic response and failure modes are investigated and discussed by using the generated FE models and ground motions. Numerical results show that the vibration mode shapes of the pile-supported transmission towers with and without SSI are basically same; however, SSI can significantly affect the dynamic characteristic by altering the vibration frequencies of different modes. Neglecting the SSI and the variability of earthquake motions at different depths may cause an underestimate and overestimate on the seismic responses, respectively. Moreover, the seismic failure mode of pile-supported transmission towers is also significantly impacted by the SSI and DVGMs.

Structural Design and Construction of High-rise Building to Feature the High-performance Oil Dampers for Vibration Control - Hibiya Mitsui Tower -

  • Kato, Takashi;Hara, Kenji;Tanaka, Hiroyuki
    • 국제초고층학회논문집
    • /
    • 제8권3호
    • /
    • pp.229-234
    • /
    • 2019
  • This report introduces the structural design of Hibiya Mitsui Tower built in Tokyo Midtown Hibiya. The upper part of this tower is used for offices and the lower portion is for commercial facilities and a cinema complex which need the large open spaces. The 192m-high building has 35 floors above ground and 4 below ground. The structure is a steel frame using CFT columns to feature the high-performance oil dampers and the buckling restrained braces for vibration control. First, an outline of the structural design of this building is presented. Second, we introduce the transfer frame adopted to realize the large open spaces in the lower part, and the long column supporting the corner part of the high-rise building to avoid making a shade on the adjacent Hibiya Park, which are the feature of this building. Finally, we present an outline of the latest highly efficient semi-active oil dampers adopted in this building, and the vibration responses of this tower.

지하역사 실내형 냉각탑 성능개선 연구 (A study on an improvement of indoor cooling tower efficiency)

  • 배성준;황선호;신창헌;표수철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1726-1735
    • /
    • 2008
  • Seoulmetro has operated the air cooling equipment for 57 stations to improve services focused on our customers who use Seoulmetro during the summer season and has established every year. However, a new set of problems has arisen with the cooling tower to support a heat exchange of cooling water. The most important matter is loss of efficiency in the cooling tower. The leading cause of this problem is that we use an indoor type. As the cooling tower room is located in the underground of the city because of the residents near the station. Therefore It is difficult to establish the cooling tower on the ground. But it is unsuitable for the location requirements of the underground type because it has a limited space to set up the air cooling equipment, for example, the cooling tower and a ventilating opening. As a result of such an unfavorable condition, the cooling tower doesn't work efficiently and the warmth of cooling water because of insufficiency of a heat exchange and a refrigerator's technical obstacle such as a high-temperature and a high-pressure has arisen. To prevent this situation, the operator tend to reduce refrigerant. Accordingly, the efficiency of the air conditioning is getting lower and lower. Study wishes to analyze the matter to improve indoor cooling tower efficiency and recommend a best practice for a person who manage the establishment.

  • PDF

Electromagnetic Field Analysis on Surge Response of 500 kV EHV Single Circuit Transmission Tower in Lightning Protection System using Neural Networks

  • Jaipradidtham, Chamni
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1637-1640
    • /
    • 2005
  • This paper presents a technique for electromagnetic field analysis on surge response due to Mid-span back-flashovers effects in lightning protection system of 500 kV EHV single circuit transmission tower by the neural networks method. These analyses are based on modeling lightning return stroke as well as on coupling the electromagnetic fields of the stroke channel to the line. The ground conductivity influences both the electric field as well as the coupling mechanism and hence the magnitude and wave shape of the induced voltage. The technique can be used to analyzed the corona voltage effect, the effective of stroke to the span tower, the surge impedance of transmission lines. The maximum voltage from flashovers effects in the lines. The model is compatible with general electromagnetic transients programs such as the ATP-EMTP. The simulation results show that this study analyses for time-domain with those produced by a cascade multi-section model, the surge impedance of a full-sized tower hit directly by a lightning stroke is discussed.

  • PDF

타워강성 효과를 고려한 소형 수직축 풍력발전기 운전 진동실험 및 해석 (Operational Vibration Experiment and Analysis of a Small Vertical-Axis Wind Turbine Considering the Effect of Tower Stiffness)

  • 추헌호;심재박;류경중;김동현;김봉영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.602-606
    • /
    • 2011
  • In this study, operational vibration experiment and analysis have been conducted for the 4-blade small vertical-axis wind turbine (VAWT) including the effect of tower elastic behavior. Computational structural dynamics analysis method is applied to obtain Campbell diagram for the VAWT with elastic tower. An open type wind-tunnel is used to change and keep the wind velocity during the ground test. Equivalent reduced elastic tower is supported to the VAWT so that the elastic stiffness effect of the tower can be reflected to the present vibration experiment. Various excitation sources with aerodynamic forces are considered and the dominant operating vibration phenomena are physically investigated in detail.

  • PDF

상시계측을 통한 해상기상탑의 동적특성 평가 (Estimation of Dynamic Characteristics of an Offshore Meteorological Tower using Ambient Measurements)

  • 이계희;레 꾸억 끄영;곽대진
    • 풍력에너지저널
    • /
    • 제14권3호
    • /
    • pp.91-99
    • /
    • 2023
  • In research conducted on a southwestern Korean offshore meteorological tower, acceleration datasets were gathered over half a year with time-history sensors. To enhance data credibility, a parallel measurement system was used for verification. A model of the tower was configured using beam elements, and with modifications accounting for added stiffness from auxiliary structures. Ground interactions were considered as calibrated springs based on soil layer properties. The tower's dynamic attributes and mass sensitivity were discerned using eigenvalue analysis. The structural natural frequency was consistent, with variations primarily due to new equipment adding approximately 1400 kgs. With free vibration damping assumptions, a damping ratio of roughly 1 % was derived.

가공지선이 연결된 송전철탑의 탑각저항 측정에 관한 연구 (A Study on the Measurement of Footing Resistance of Transmission Towers with Overhead Grounding wires)

  • 이원교;최종기;이영우;최인혁;김경철
    • 한국전기전자재료학회논문지
    • /
    • 제23권1호
    • /
    • pp.61-64
    • /
    • 2010
  • Footing Resistance of a 154 kV transmission towers in korea is commonly required to be less than 15 ohm to avoid lightning back-flashover accident. The periodic measurement of Footing Resistance is important to verify that the grounding performance of the towers has been maintained good. Towers are electrically connected in parallel with overhead grounding wire, therefore footing resistance of each tower will be measured after disconnecting the overhead ground wires from the towers. however, In this paper, three direct measurement methods of footing resistance are presented. There are very useful methods without disconnecting overhead ground wires from the tower under measurement. They are compared in KEPCO 154 kV transmission towers. The experimental results describe performances of them.

다물체 동역학을 이용한 타워크레인 운송 모델링 방법 연구 (Examination of Modeling Methods for Tower Crane Transportation using Multibody Dynamics)

  • 조아라;박광필;이철우
    • 대한조선학회논문집
    • /
    • 제52권4호
    • /
    • pp.330-337
    • /
    • 2015
  • When a tower crane is carried by a transporter in shipyard, the height and length of the tower crane should be adjusted to meet the safety guidelines. Since the guidelines came from the field experience, the safety limitation needs to be analyzed by a computer simulation. In this paper, modeling methods are addressed to implement the appropriate transportation simulation of a tower crane. For the relation between the tower crane and the transporter, normal contact force, friction force, and kinematic constraints are compared. Assignment of relevant linear acceleration and angular velocity is considered for the transporter to start or move on an inclined ground surface. By using the examined modeling methods, the dynamic motion of tower crane transportation is analyzed by a dynamic simulation program, and comparison between the simulation result and analytic solution is made to verify the feasibility of the modeling methods.

Monitoring canopy phenology in a deciduous broadleaf forest using the Phenological Eyes Network (PEN)

  • Choi, Jeong-Pil;Kang, Sin-Kyu;Choi, Gwang-Yong;Nasahara, Kenlo Nishda;Motohka, Takeshi;Lim, Jong-Hwan
    • Journal of Ecology and Environment
    • /
    • 제34권2호
    • /
    • pp.149-156
    • /
    • 2011
  • Phenological variables derived from remote sensing are useful in determining the seasonal cycles of ecosystems in a changing climate. Satellite remote sensing imagery is useful for the spatial continuous monitoring of vegetation phenology across broad regions; however, its applications are substantially constrained by atmospheric disturbances such as clouds, dusts, and aerosols. By way of contrast, a tower-based ground remote sensing approach at the canopy level can provide continuous information on canopy phenology at finer spatial and temporal scales, regardless of atmospheric conditions. In this study, a tower-based ground remote sensing system, called the "Phenological Eyes Network (PEN)", which was installed at the Gwangneung Deciduous KoFlux (GDK) flux tower site in Korea was introduced, and daily phenological progressions at the canopy level were assessed using ratios of red, green, and blue (RGB) spectral reflectances obtained by the PEN system. The PEN system at the GDK site consists of an automatic-capturing digital fisheye camera and a hemi-spherical spectroradiometer, and monitors stand canopy phenology on an hourly basis. RGB data analyses conducted between late March and early December in 2009 revealed that the 2G_RB (i.e., 2G - R - B) index was lower than the G/R (i.e., G divided by R) index during the off-growing season, owing to the effects of surface reflectance, including soil and snow effects. The results of comparisons between the daily PEN-obtained RGB ratios and daily moderate-resolution imaging spectroradiometer (MODIS)-driven vegetation indices demonstrate that ground remote sensing data, including the PEN data, can help to improve cloud-contaminated satellite remote sensing imagery.

Study on the influence of structural and ground motion uncertainties on the failure mechanism of transmission towers

  • Zhaoyang Fu;Li Tian;Xianchao Luo;Haiyang Pan;Juncai Liu;Chuncheng Liu
    • Earthquakes and Structures
    • /
    • 제26권4호
    • /
    • pp.311-326
    • /
    • 2024
  • Transmission tower structures are particularly susceptible to damage and even collapse under strong seismic ground motions. Conventional seismic analyses of transmission towers are usually performed by considering only ground motion uncertainty while ignoring structural uncertainty; consequently, the performance evaluation and failure prediction may be inaccurate. In this context, the present study numerically investigates the seismic responses and failure mechanism of transmission towers by considering multiple sources of uncertainty. To this end, an existing transmission tower is chosen, and the corresponding three-dimensional finite element model is created in ABAQUS software. Sensitivity analysis is carried out to identify the relative importance of the uncertain parameters in the seismic responses of transmission towers. The numerical results indicate that the impacts of the structural damping ratio, elastic modulus and yield strength on the seismic responses of the transmission tower are relatively large. Subsequently, a set of 20 uncertainty models are established based on random samples of various parameter combinations generated by the Latin hypercube sampling (LHS) method. An uncertainty analysis is performed for these uncertainty models to clarify the impacts of uncertain structural factors on the seismic responses and failure mechanism (ultimate bearing capacity and failure path). The numerical results show that structural uncertainty has a significant influence on the seismic responses and failure mechanism of transmission towers; different possible failure paths exist for the uncertainty models, whereas only one exists for the deterministic model, and the ultimate bearing capacity of transmission towers is more sensitive to the variation in material parameters than that in geometrical parameters. This research is expected to provide an in-depth understanding of the influence of structural uncertainty on the seismic demand assessment of transmission towers.