• Title/Summary/Keyword: Toughness and durability

Search Result 58, Processing Time 0.029 seconds

Development of Superplastic Forming/Diffusion Bonding Technology for Ti-6Al-4V Sandwich Panels (Ti-6Al-4V 샌드위치 패널제작을 위한 초소성/확산접합 기술개발)

  • Lee, Ho-Sung;Yoon, Jong-Hoon;Lee, Seung-Chul;Park, Dong-Kyu;Yi, Yeong-Moo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.123-128
    • /
    • 2008
  • Ti-6Al-4V alloy is a critical strategic metal used in aerospace structure due to the high specific strength, toughness, durability, low density, corrosion resistance. Examples of application of this alloy are airframe structural components, aircraft gas turbine disks and blades. Forming of this alloy is not easy due to its high strength and low formability. However, this alloy shows superplastic properties that allow for large plastic deformation under certain conditions. Combination of superplastic forming and diffusion bonding(SPF/DB) processes of this alloy has been widely used to replace mechanically fastened structures with reduced weight and fabrication costs. In this study, superplastic forming/diffusion bonding technology has been developed for fabricating lightweight sandwich panels with Ti-6Al-4V alloy. The experimental results show the forming of titanium lightweight sandwich structure is successfully performed from 3 and 4 sheets of Ti-6Al-4V.

Characteristics of Surface Hardened Press Die Materials by CO2 Laser Beam Irradiation (CO2 레이저 빔 조사에 의한 프레스 금형재료의 표면경화 특성)

  • Yang, Se-Young;Choi, Seong-Dae;Choi, Myeong-Soo;Jun, Jae-Mok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.31-37
    • /
    • 2011
  • Recently, the technology of surface treatment is being more important which affects the material cost reduction and substitution to the expensive material. The material used for the mechanical processing should have not only high intensity, but also strength toughness, wear resistance and corrosion resistance. In order to increase the durability and have better quality of the parts using such kind of tooling material, various kinds of research of the surface hardening through many kinds of heat resources is being done and practically applied. In this study, the characteristics of hardening surface zone for high strength of the press die material through laser beam irradiation are researched. In this study, it is experimentally observed by the status of the surface morphology, tensile strength, the hardness distribution of the base metal and wear condition by the surface hardness pattern by the laser beam based on the process parameters of $CO_2$ laser by using SM45C and STD11 used for press tool. Through this research, the characteristics of surface hardened zone for high strength of the thin metal by laser beam irradiation is done.

Nonlinear finite element analysis of ultra-high performance fiber reinforced concrete beams subjected to impact loads

  • Demirtas, Gamze;Caglar, Naci;Sumer, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.81-92
    • /
    • 2022
  • Ultra-high performance fiber reinforced concrete (UHPFRC) is a composite building material with high ductility, fatigue resistance, fracture toughness, durability, and energy absorption capacity. The aim of this study is to develop a nonlinear finite element model that can simulate the response of the UHPFRC beam exposed to impact loads. A nonlinear finite element model was developed in ABAQUS to simulate the real response of UHPFRC beams. The numerical results showed that the model was highly successful to capture the experimental results of selected beams from the literature. A parametric study was carried out to investigate the effects of reinforcement ratio and impact velocity on the response of the UHPFRC beam in terms of midpoint displacement, impact load value, and residual load-carrying capacity. In the parametric study, the nonlinear analysis was performed in two steps for 12 different finite element models. In the first step, dynamic analysis was performed to monitor the response of the UHPFRC beam under impact loads. In the second step, static analysis was conducted to determine the residual load-carrying capacity of the beams. The parametric study has shown that the reinforcement ratio and the impact velocity affect maximum and residual displacement value substantially.

Investigation of the effect of internal curing as a novel method for improvement of post-fire properties of high-performance concrete

  • Moein Mousavi;Habib Akbarzadeh Bengar
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.309-324
    • /
    • 2024
  • Internal curing, a widely used method for mitigating early-age shrinkage in concrete, also offers notable advantages for concrete durability. This paper explores the potential of internal curing by partial replacement of sand with fine lightweight aggregate for enhancing the behavior of high-performance concrete at elevated temperatures. Such a technique may prove economical and safe for the construction of skyscrapers, where explosive spalling of high-performance concrete in fire is a potential hazard. To reach this aim, the physico-mechanical features of internally cured high-strength concrete specimens, including mass loss, compressive strength, strain at peak stress, modulus of elasticity, stress-strain curve, toughness, and flexural strength, were investigated under different temperature exposures; and to predict some of these mechanical properties, a number of equations were proposed. Based on the experimental results, an advanced stress-strain model was proposed for internally cured high-performance concrete at different temperature levels, the results of which agreed well with the test data. It was observed that the replacement of 10% of sand with pre-wetted fine lightweight expanded clay aggregate (LECA) not only did not reduce the compressive strength at ambient temperature, but also prevented explosive spalling and could retain 20% of its ambient compressive strength after heating up to 800℃. It was then concluded that internal curing is an excellent method to enhance the performance of high-strength concrete at elevated temperatures.

Effect of Repeated Wet/Dry Cycles of Salt Solution on Flexural Performance of Steel Fiber Reinforced Concrete (반복적 염수침지가 강섬유 혼입 콘크리트의 휨성능에 미치는 영향)

  • Kim, Ji-Hyun;Choi, Yu-Jin;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.553-564
    • /
    • 2022
  • Concrete is a representative composite material that shows excellent performance in the construction field. However, it is a brittle and nonhomogeneous material and exhibits weak behavior against bending and tensile forces. To compensate for such weakens, fiber reinforcement has been utilized, and steel fiber has been recognized as one of the best material for such purpose. However, steel fiber can seriously affect the durability of concrete exposed to the marine environment due to the corrosion caused by chlorine ions. This study intended to evaluate the mechanical performance of steel fiber reinforce concrete during and after repeated wet/dry cycles in salt solution. According to the experimental results, there was no reduction in the relative dynamic modulus of concrete during the repeated wet/dry cycles in salt solution for 37 weeks. Flexural strength was not decreased after completion of repeated wet/dry cycles in salt solution. There was no sign of corrosion in steel fibers after visual observation of fractured surface. However, the flexural toughness was decreased, and this is because about half of the concrete specimen showed failure before reaching the maximum displacement of 3 mm. Although repeated wet/dry cycles in salt solution did not cause cracks in concrete through corrosion of steel fibers, specific attention is required because it can reduce flexural toughness of steel fiber reinforced concrete.

A Making of Aesthetic Dental restorations with Nano Hybrid Ceramic material by CAD/CAM System (치과 CAD/CAM용 Nano Hybrid Ceranic 소재를 이용한 심미 치과보철물의 제작)

  • Choi, Beom-jin
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.25 no.2
    • /
    • pp.98-108
    • /
    • 2016
  • In recent days, perhaps the biggest driver in new material development is the desire to improve restorations esthetics compared to the traditional metal substructure based ceramics or all-ceramic restorations. Each material type performs differently regarding strength, toughness, effectiveness of machining and the final preparation of the material prior to placement. For example, glass ceramics are typically weaker materials which limits its use to single-unit restorations. On the other hand, zirconia has a high fracture toughness which enables multi-unit restorations. This material requires a long time sintering procedure which excludes its use for fast chair side production. Hybrid ceramic material developed for CAD/CAM system is contained improved nano ceramic elements. This new material, called a Resin Nano Hybrid Ceramic is unique in durability of function and aesthetic base compositions. The new nano-hybrid ceramic material is not a composite resin. It is also not a pure ceramic. The material is a mixture of both and consists of nano-ceramic fillers. Like a composite, the material is not brittle and is fracture resistant. Like a glass ceramic, the material has excellent polish retention for lasting esthetics. The material is easily machined by chair side or in a dental lab side, could be an useful restorative option.

The Fractural-Mechanical Properties and Durability of Lightweight Concrete Using the Synthetic Lightweight Aggregate (합성경량골재(SLA)를 사용한 경량콘크리트의 파괴, 역학적 특성 및 내구성)

  • Jo Byung-Wan;Park Seung-Kook;Park Jong-Bin;Daniel C. Jansen
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.19-25
    • /
    • 2005
  • Recycling of waste materials in the construction Industry is a useful method that can cope with an environment restriction of every country. In this study, synthetic lightweight aggregates are manufactured with recycled plastic and fly ash with 12 percent carbon. Nominal maximum-size aggregates of 9.5 mm were produced with fly ash contents of 0, 35, and $80\%$ by the total mass of the aggregate. An expanded clay lightweight aggregate and a normal-weight aggregate were used as comparison. Gradation, density, and absorption capacity are reported for the aggregates. Five batches of concrete were made with the different coarse aggregate types. Mechanical properties of the concrete were determined including density, compressive strength, elastic modulus, splitting tensile strength, fracture toughness, and fracture energy. Salt-scaling resistance, a concrete durability property, was also examined. Compressive and tensile strengths were lower for the synthetic aggregates; however, comparable fracture properties were obtained. Relatively low compressive modulus of elasticity was found for concretes with the synthetic lightweight aggregate, although high ductility was also obtained. As nv ash content of the synthetic lightweight aggregate increased, all properties of the concrete were improved. Excellent salt-scaling resistance was obtained with the synthetic lightweight aggregate containing 80 percent fly ash.

Comparison of Microstructure & Mechanical Properties between Mn-Mo-Ni and Ni-Mo-Cr Low Alloy Steels for Reactor Pressure Vessels (원자로 압력용기용 Mn-Mo-Ni계 및 Ni-Mo-Cr계 저합금강의 미세조직과 기계적 특성 비교)

  • Kim, Min-Chul;Park, Sang Gyu;Lee, Bong-Sang
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.194-202
    • /
    • 2010
  • Application of a stronger and more durable material for reactor pressure vessels (RPVs) might be an effective way to insure the integrity and increase the efficiency of nuclear power plants. A series of research projects to apply the SA508 Gr.4 steel in ASME code to RPVs are in progress because of its excellent strength and durability compared to commercial RPV steel (SA508 Gr.3 steel). In this study, the microstructural characteristics and mechanical properties of SA508 Gr.3 Mn-Mo-Ni low alloy steel and SA508 Gr.4N Ni-Mo-Cr low alloy steel were investigated. The differences in the stable phases between these two low alloy steels were evaluated by means of a thermodynamic calculation using ThermoCalc. They were then compared to microstructural features and correlated with mechanical properties. Mn-Mo-Ni low alloy steel shows the upper bainite structure that has coarse cementite in the lath boundaries. However, Ni-Mo-Cr low alloy steel shows the mixture of lower bainite and tempered martensite structure that homogeneously precipitates the small carbides such as $M_{23}C_6$ and $M_7C_3$ due to an increase of hardenability and Cr addition. In the mechanical properties, Ni-Mo-Cr low alloy steel has higher strength and toughness than Mn-Mo-Ni low alloy steel. Ni and Cr additions increase the strength by solid solution hardening. In addition, microstructural changes from upper bainite to tempered martensite improve the strength of the low alloy steel by grain refining effect, and the changes in the precipitation behavior by Cr addition improve the ductile-brittle transition behavior along with a toughening effect of Ni addition.

Multiple effects of nano-silica on the pseudo-strain-hardening behavior of fiber-reinforced cementitious composites

  • Hossein Karimpour;Moosa Mazloom
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.467-484
    • /
    • 2023
  • Despite the significant features of fiber-reinforced cementitious composites (FRCCs), including better mechanical, fractural, and durability performance, their high content of cement has restricted their use in the construction industry. Although ground granulated blast furnace slag (GGBFS) is considered the main supplementary cementitious material, its slow pozzolanic reaction stands against its application. The addition of nano-sized mineral modifiers, including nano-silica (NS), is an alternative to address the drawbacks of using GGBFS. The main object of this empirical and numerical research is to examine the effect of NS on the strain-hardening behavior of cementitious composites; ten mixes were designed, and five levels of NS were considered. This study proposes a new method, using a four-point bending test to assess the use of nano-silica (NS) on the flexural behavior, first cracking strength, fracture energy, and micromechanical parameters including interfacial friction bond strength and maximum bridging stress. Digital image correlation (DIC) was used for monitoring the initiation and propagation of the cracks. In addition, to attain a deep comprehension of fiber/matrix interaction, scanning electron microscope (SEM) analysis was used. It was discovered that using nano-silica (NS) in cementitious materials results in an enhancement in the matrix toughness, which prevents multiple cracking and, therefore, strain-hardening. In addition, adding NS enhanced the interfacial transition zone between matrix and fiber, leading to a higher interfacial friction bond strength, which helps multiple cracking in the composite due to the hydrophobic nature of polypropylene (PP) fibers. The findings of this research provide insight into finding the optimum percent of NS in which both ductility and high tensile strength of the composites would be satisfied. As a concluding remark, a new criterion is proposed, showing that the optimum value of nano-silica is 2%. The findings and proposed method of this study can facilitate the design and utilization of green cementitious composites in structures.

Estimation of Indent Fracture due to the Moving Process of a Pin on PCB Plate (PCB 판에 대한 핀의 이동 공정에 따른 압입파괴 평가)

  • Kim, Young-Choon;Kim, Choon-Sik;Lee, Hee-Sung;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.6967-6972
    • /
    • 2014
  • Assembly using a bolt and nut, and rivet or pin have been used widely for forming mechanical joints. The indent method is an easier process than other manufacturing techniques and the toughness of the material is excellent. On the other hand, there are many cases in which the cracks occur on the manufacturing process as the indent method. Therefore, two kinds of models, in which a pin goes into and out PCB plate in this study were developed using the CATIA program and finite element methods were performed using the ANSYS program. When a pin was passed through a PCB plate in cases 1 and 2, the maximum loads applied to the PCB plate were 79.708N and 90.277N, respectively. When the PCB plate came out of the pin in cases 1 and 2, the maximum loads were 63.783N and 33.75N, respectively. The damage prevention and durability can be improved by applying the study results to the design of real indentation.