• 제목/요약/키워드: Toughness Testing

검색결과 161건 처리시간 0.028초

Stress corrosion index of Kumamoto andesite estimated from two types of testing method

  • Jeong Hae-Sik;Nara Yoshitaka;Obara Yuzo;Kaneko Katsuhiko
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.221-228
    • /
    • 2003
  • The stress corrosion index of Kumamoto andesite are evaluated by two types of testing method. One is the uniaxial compression test under various water vapor pressures, and the other is the double torsion (DT) test under a constant water vapor pressure. For the uniaxial compression tests, the uniaxial compressive strength increases linearly with decreasing water vapor pressure on the double logarithmic coordinates. As the results, the stress corrosion index obtained is estimated 44. On the other hand, in the DT test, the relaxation (RLX) test and the constant displacement rate (CDR) test were conducted. For the CDR test, as the displacement rate of loading point increases, the crack velocity increases. However, the fracture toughness is constant regardless of the change in displacement rate and the average fracture toughness is evaluated $2.07MN/m^{3/2}$. For the RLX test, the crack velocity-stress intensity factor curves are smooth and linear. The stress corrosion index estimated from the curves is 37. Comparing stress corrosion indexes in the uniaxial compression test and the DT test, there is no significant difference in these values, and they are considered to be in coincident each other regardless of testing methods. Therefore, it is concluded that stress corrosion is one of material constants of rock.

  • PDF

Mechanical Properties and Microstructure of the Leucite-Reinforced Glass-Ceramics for Dental CAD/CAM

  • Byeon, Seon-Mi;Song, Jae-Joo
    • 치위생과학회지
    • /
    • 제18권1호
    • /
    • pp.42-49
    • /
    • 2018
  • The computer-aided design/computer-aided manufacturing (CAD/CAM) system was introduced to shorten the production time of all-ceramic restorations and the number of patient visits. Among these types of ceramic for dental CAD/CAM, they have been processed into inlay, onlay, and crown shapes using leucite-reinforced glass-ceramics to improve strength. The purpose of this study was to observe the mechanical properties and microstructure of leucite-reinforced glass-ceramics for dental CAD/CAM. Two types of leucite-reinforced glass-ceramic blocks (IPS Empress CAD, Rosetta BM) were prepared with diameter of 13 mm and thickness of 1 mm. Biaxial flexural testing was conducted using a piston-on-three-ball method at a crosshead speed of 0.5 mm/min. Weibull statistics were used for the analysis of biaxial flexural strength. Fracture toughness was obtained using an indentation fracture method. Specimens were observed by field emission scanning electron microscopy to examine the microstructure of the leucite crystalline phase after acid etching with 0.5% hydrofluoric acid aqueous solution for 1 minute. The results of strength testing showed that IPS Empress CAD had a mean value of $158.1{\pm}8.6MPa$ and Rosetta BM of $172.3{\pm}8.3MPa$. The fracture toughness results showed that IPS Empress CAD had a mean value of $1.28{\pm}0.19MPa{\cdot}m^{1/2}$ and Rosetta BM of $1.38{\pm}0.12MPa{\cdot}m^{1/2}$. The Rosetta BM sample exhibited higher strength and fracture toughness. Moreover, the crystalline phase size and ratio were increased in the Rosetta BM sample. The above results are expected to elucidate the basic mechanical properties and crystal structure characteristics of IPS Empress CAD and Rosetta BM. Additionally, they will help develop leucite-reinforced glass-ceramic materials for CAD/CAM.

The comparison between NBD test results and SCB test results using experimental test and numerical simulation

  • Fu, Jinwei;Sarfarazi, Vahab;Haeri, Hadi;Naderi, K.;Fatehi Marji, Mohammad;Guo, Mengdi
    • Advances in concrete construction
    • /
    • 제13권1호
    • /
    • pp.83-99
    • /
    • 2022
  • The two, NBD and SCB tests using gypsum circular discs each containing a single notch have been experimentally accomplished in a rock mechanics laboratory. These specimens have also been numerically modelled by a two-dimensional particle flow which is based on Discrete Element Method (DEM). Each testing specimen had a thickness of 5 cm with 10 cm in diameter. The specimens' lengths varied as 2, 3, and 4 cm; and the specimens' notch angles varied as 0°, 45° and 90°. Similar semi-circular gypsum specimens were also prepared each contained one edge notch with angles 0° or 45°. The uniaxial testing machine was used to perform the experimental tests for both NBD and SCB gypsum specimens. At the same time, the numerical simulation of these tests were performed by PFC2D. The experimental results showed that the failure mechanism of rocks is mainly affected by the orientations of joints with respect to the loading directions. The failure mechanism and fracturing patterns of the gypsum specimens are directly related to the final failure loading. It has been shown that the number of induced tensile cracks showing the specimens' tensile behavior, and increases by decreasing the length and angle of joints. It should be noted that the fracture toughness of rocks' specimens obtained by NBD tests was higher than that of the SCB tests. The fracture toughness of rocks usually increases with the increasing of joints' angles but increasing the joints' lengths do not change the fracture toughness. The numerical solutions and the experimental results for both NDB and SCB tests give nearly similar fracture patterns during the loading process.

Thermal Shock Tests and Thermal Shock Parameters for Ceramics

  • Awaji, Hideo;Choi, Seong-Min
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.385-396
    • /
    • 2012
  • Thermal shock test methods and thermal shock parameters for ceramics were reviewed from the following viewpoints: (1) The test methods should be based on the precise estimation of both temperature and thermal stress distributions in a specimen taking into account the temperature-dependent thermo-mechanical properties; (2) The thermal shock parameters must be defined as a physical property of the materials and described as a function of temperature at the fracture point of the specimen; (3) The relation between the strength and fracture toughness of brittle ceramics under a thermal shock load must be the same as the relation under a mechanical load. In addition, appropriate thermal shock parameters should be defined by the thermal shock strength and thermal shock fracture toughness based on stress and energy criteria, respectively. A constant heat flux method is introduced as a testing technique suitable for estimating these thermal shock parameters directly from the electric power charged.

SA508 PCVN 시편의 균열깊이에 따른 구속력 손실 평가 (Constraint Loss Assessment of SA508 PCVN Specimen according to Crack depth)

  • 박상윤;이호진;이봉상
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.161-166
    • /
    • 2008
  • In general structures, cleavage fracture may develop under the low constraint condition of larger scale yielding with a shallow surface crack. However, standard procedures for fracture toughness testing require very severe restrictions of specimen geometry. So the standard fracture toughness data makes the integrity assessment irrationally conservative. In this paper, cleavage fracture toughness tests have been made on side-grooved PCVN (precracked charpy V-notch) type specimens (10 by 10 by 55 mm) with varying crack depth, The constraint effects on the crack depth ratios are quantitatively evaluated by scaling model and Weibull stress method using 3-D finite clement method, After correction of constraint loss due to shallow crack depths, the statistical size effect are also corrected according to the standard ASTM E 1921 procedure, The results snowed a good agreement in the geometry correction regardless of the crack size, while some over-corrections were observed in the corrected values of $T_0$.

  • PDF

크롬합금강의 동적파괴인성에 미치는 이온실화처리의 영향 (Influence of Ion-Nitriding on Dynamic Fracture Toughness in Cr Alloy Steels)

  • 오세욱;윤한기;장래웅;김기술
    • 한국해양공학회지
    • /
    • 제2권1호
    • /
    • pp.150-162
    • /
    • 1988
  • The dynamic fracture toughness, $K_{Id}$,is measured in the heat-treated and ion-nitrided Cr-Mo, Ni-Cr-Mo steel using standard and Precracked Charpy specimens an imstrumented impact machine. The value of $K_{Id}$and both the energy of initiate fracture, and the total energy of fracture. Since the $K_{Id}$values of the precraked impact specimens are in accord with their theoretical ones, this testing method is sufficently practical. The effect of ion-nitriding are found to be larger than the heat-treaded specimen.

  • PDF

치과용 복합레진의 파괴인성에 관한 실험적 연구 (A STUDY ON THE FRACTURE TOUGHNESS OF DENTAL COMPOSITE RESINS)

  • 박진훈;민병순;최호영;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제15권2호
    • /
    • pp.17-33
    • /
    • 1990
  • The purpose of this study was to evaluate the fracture toughness of dental composite resins and to investigate the filler factor affecting the fracture behaviour on which the degree of fracture toughness depends. Six kinds of commercially available composite resin;, including two of each macrofilled, microfilled, and hybrid type were used for this study, The plane strain fracture toughness ($K_{10}$) was determined by three-point bending test using the single edge notch specimen according to the ASTM-E399. The specimens were fabricated with visible light curing or self curing of each composite resin previously inserted into a metal mold, and three-point bending test was conducted with cross-head speed of 0.1mm/min following a day's storage of the specimens in $37^{\circ}C$ distilled water. The filler volume fractions were determined by the standard ashing test according to the ISO-4049. Acoustic Emission(AE), a nondestructive testing method detecting the elastic wave released from the localized sources In material under a certain stress, was detected during three-point bending test and its analyzed data was compared with, canning electron fractographs of each specimen. The results were as follows : 1. The filler content of composite resin material was found to be highest in the hybrid type followed by the macrofilled type, and the microfilled type. 2. It was found that the value of plane strain fracture toughness of composite resin material was in the range from 0.69 MPa$\sqrt{m}$ to 1 46 MPa$\sqrt{m}$ and highest In the macrofilled type followed by the hybrid type, and the microfilled type. 3. The consequence of Acoustic Emission analysis revealed that the plane strain fracture toughness increased according as the count of Acoustic Emission events increased. 4. The higher the plane strain fracture toughness became, the higher degree of surface roughness and irregularity the fractographs demonstrated.

  • PDF

ATJ 그라파이트의 $CO_2$ 레이저를 이용한 열충격 강도 및 열충격 파괴인성 평가 (Evaluation of thermal shock resistance and thermal shock fracture toughness using $CO_2$ laser for ATJ graphite)

  • 김재훈;이영신;박노석;김덕회;한영욱;서정;김정오
    • 한국레이저가공학회지
    • /
    • 제6권1호
    • /
    • pp.17-24
    • /
    • 2003
  • The purpose of this study is to evaluate thermal shock resistance and thermal shock fracture toughness for ATJ graphite. Thermal shock resistance and thermal shock fracture toughness of ATJ graphite are evaluated by using CO$_2$ laser irradiation technique. The laser heat source is irradiated at the center of specimens. Temperature distribution on the specimen surface is measured using the thermocouples of type K and C. SEM and radiographic images are used to observe the cracks which are formed at the thermal shock specimens.

  • PDF

Fracture toughness of high performance concrete subjected to elevated temperatures Part 1 The effects of heating temperatures and testing conditions (hot and cold)

  • Zhang, Binsheng;Cullen, Martin;Kilpatrick, Tony
    • Advances in concrete construction
    • /
    • 제2권2호
    • /
    • pp.145-162
    • /
    • 2014
  • In this study, the fracture toughness $K_{IC}$ of high performance concrete (HPC) was determined by conducting three-point bending tests on eighty notched HPC beams of $500mm{\times}100mm{\times}100mm$ at high temperatures up to $450^{\circ}C$ (hot) and in cooled-down states (cold). When the concrete beams exposed to high temperatures for 16 hours, both thermal and hygric equilibriums were generally achieved. $K_{IC}$ for the hot concrete sustained a monotonic decrease tendency with the increasing temperature, with a sudden drop at $105^{\circ}C$. For the cold concrete, $K_{IC}$ sustained a two-stage decrease trend, dropping slowly with the heating temperature up to $150^{\circ}C$ and rapidly thereafter. The fracture energy-based fracture toughness $K_{IC}$' was found to follow similar decrease trends with the heating temperature. The weight loss, the fracture energy and the modulus of rapture were also evaluated.

간헐적인 층간접착 을 이용한 Graphite/Epoxy 복합재료 의 파괴인성 개선 (Fracture Toughness Improvement of Graphite/Epoxy Composite by Intermittent Interlaminar Bonding)

  • 임승규;홍창선
    • 대한기계학회논문집
    • /
    • 제8권5호
    • /
    • pp.425-434
    • /
    • 1984
  • 본 연구에서는 [0˚/90˚]$_{2s}$, Gr/Gp 복합 적층판에 대해서 접착면의 비율과 폴리에스테르 필름의 구멍의 형상이 적층판의 인장 성질과 파괴인성에 미치는 영향에 대한 실험적인 결과를 얻고자 한다.다.