• Title/Summary/Keyword: Touchdown zone

Search Result 4, Processing Time 0.016 seconds

Significance of seabed interaction on fatigue assessment of steel catenary risers in the touchdown zone

  • Elosta, Hany;Huang, Shan;Incecik, Atilla
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.403-423
    • /
    • 2016
  • The challenges involved with fatigue damage assessment of steel catenary riser (SCR) in the touchdown zone (TDZ) are primarily due to the non-linear behaviour of the SCR-seabed interaction, considerable uncertainty in SCR-seabed interaction modelling and geotechnical parameters. The issue of fatigue damage induced by the cyclic movements of the SCR with the seabed has acquired prominence with the touch down point (TDP) interaction in the TDZ. Therefore, the SCR-seabed response is critical for reliable estimation of fatigue life in the TDZ. Various design approaches pertaining to the lateral pipe-soil resistance model are discussed. These techniques have been applied in the finite element model that can be used to analyse the lateral SCR-seabed interaction under hydrodynamic loading. This study investigates the sensitivity of fatigue performance to geotechnical parameters through a parametric study. In this study, global analyses are performed to assess the influence of vertical linear seabed springs, the lateral seabed model and the non-linear seabed model, including trench evolution into seabed, seabed normalised stiffness, re-penetration offset parameter and soil suction resistance ratio, on the fatigue life of SCRs in the TDZ.

Experimental investigations on seismic response of riser in touchdown zone

  • Dai, Yunyun;Zhou, Jing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.348-359
    • /
    • 2018
  • A series of indoor simulation tests on a large-sized shaking table was performed, which was used to simulate the earthquake ground motion for the pipe-soil interaction system to be tested. The purpose of this study is to examine the dynamic characteristic and seismic response of a length of PVC pipeline lay on a clay seabed under seismic load. The pipeline was fully instrumented to provide strain and acceleration responses in both transverse and in-line. Dynamical modal tests show that corresponding mode shapes vertically and horizontally are basically the same. But the absolute values of the natural frequencies vertically are all higher than those corresponding values in transverse. It turned out that the geometry configuration of riser affects its stiffness. Seismic response of pipeline depends significantly on the waveform, and Peak Ground Acceleration (PGA). As the seismic loading progressed, the strain response was severe around both TDZ and catenary zone. Additionally, strain responses in top and bottom positions were more severe than the result in left or right side of the pipeline in the same section.

Semisubmersible platforms with Steel Catenary Risers for Western Australia and Gulf of Mexico

  • Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.99-113
    • /
    • 2012
  • Steel Catenary Risers (SCR) are the simplest and often the most economic solution compared to other riser types such as flexible pipe, riser towers, top tensioned risers, etc. The top of a SCR is connected to the host platform riser porch. The other end of the SCR connects to flowlines from subsea wells. The riser touchdown point (TDP), which is the location along the riser where contact with the sea floor first occurs, exhibits complex behaviors and often results in compression and fatigue related issues. Heave dynamic responses of semisubmersibles in extreme and operating sea states are crucial for feasibility of SCR application. Recent full field measurement results of a deep draft semisubmersible in Hurricane Gustav displayed the considerable discrepancies in heave responses characteristics between the measured and the simulated results. The adequacy and accuracy of the simulated results from recognized commercial software should be examined. This finding raised the awareness of shortcomings of current commercial software and potential risk in mega investment loss and environmental pollutions due to SCR failures. One main objective of this paper is to attempt to assess the importance and necessity of accounting for viscous effects during design and analysis by employing indicator of viscous parameter. Since viscous effects increase with nearly third power of significant wave height, thus newly increased metocean criteria per API in central Gulf of Mexico (GoM) and even more severe environmental conditions in Western Australia (WA) call for fundamental enhancements of the existing analysis tools to ensure reliable and robust design. Furthermore, another aim of this paper is to address the impacts of metocean criteria and design philosophy on semisubmersible hull sizing in WA and GoM.

Structural Analysis of Deepwater Steel Catenary Riser using OrcaFlex (OrcaFlex를 이용한 심해 SCR 구조 해석)

  • Park, Kyu-Sik;Choi, Han-Suk;Kim, Do-Kyun;Yu, Su-Young;Kang, Soo-Chang
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.16-27
    • /
    • 2015
  • The design challenges when attempting to obtain sufficient strength for a deepwater steel catenary riser (SCR) include high stress near the hang-off location, an elevated beam-column buckling load due to the effective compression in the touchdown zone (TDZ), and increased stress and low-cycle fatigue damage in the TDZ. Therefore, a systematic strength analysis is required for the proper design of an SCR. However, deepwater SCR analysis is a new research area. Thus, the objective of this study was to develop an overall analysis procedure for a deepwater SCR. The structural behavior of a deepwater SCR under various environmental loading conditions was investigated, and a sensitivity analysis was conducted with respect to various parameters such as the SCR weight, weight of the internal contents, hang-off angle (HOA), and vertical soil stiffness. Based on a deepwater SCR design example, it was found that the maximum stress of an SCR occurred at a hang-off location under parallel loading direction with respect to the riser plane, except for a wave dominant dynamic survival loading condition. Furthermore, the tensile stress governed the total stress of the SCRs, whereas the bending stress governed the total stress at the TDZ. The weight of the SCR and internal contents affected the maximum stress of the SCR more than the HOA and vertical soil stiffness, because the weight of the SCR, including the internal contents, was directly related to its tensile stress.