• Title/Summary/Keyword: Touch device

Search Result 258, Processing Time 0.031 seconds

Development of Automatic Hole Position Measurement System using the CCD-camera (CCD-카메라를 이용한 홀 변위 자동측정시스템 개발)

  • 김병규;최재영;강희준;노영식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.127-130
    • /
    • 2004
  • For the quality control of the industrial products, an automatic hole measuring system has been developed. The measurement device allows X-Y movement due to contact forces between a hole and its own circular cone and the device is attached to an industrial robot. Its measurement accuracy is about 0.04mm. This movement of the plate is measured by two LVDT sensor system. But this system using the LVDT sensors is restricted by high cost and precision of measurement and correspondence of environment so particularly, a vision system with CCD-Camera is discussed in this paper for the above mentioned purpose. The device consists of two of two links jointed with hinge pins basically and, they guarantee free movement of the touch prove attached on the second link in the same plane. These links are returned to home position by the spring plungers automatically after each process for the next one. On the surface of the touch prove, it has a circular white mark for camera recognition. The system detect and notify the center coordinate of capture mark image through the image processing. Its measuring accuracy has been proved to be about $\pm$0.01mm through the repeated implementation over 200 times. This technique will shows the advantage of touch-indirect image capture idea using cone-shaped touch prove in various symmetrical shaped holes particulary, like tapped holes, chamfered holes, etc As a result, we attained our object in a view of the accuracy, economical efficiency, and functionality

  • PDF

The Implementation of uClinux Device Driver of Nios II Embedded Processor System for Multimedia Application (멀티미디어 응용을 위한 Nios II 임베디드 프로세서 시스템의 uClinux 디바이스 드라이버 구현)

  • Kim, Dong-Jin;Park, Young-Seak
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.4
    • /
    • pp.245-255
    • /
    • 2009
  • Recently, embedded processor systems have been widely used in the field of information communication devices and increased its use range and influence. The embedded systems are offered variety of functions, and its operating systems have been developed to make them easy to repair and maintain. Especially embedded linux is very cheap and provide a lot of equipment drivers. Also we can set up our own system because the source code is opened. In this paper, we describe the implementation of Touch panel and TFT-LCD device driver that are widely used for multimedia application. We designed the system hardware by using Altera Nios II embedded system. And we implemented the device drivers of frame buffer, touch panel and i2s based on uClinux for multimedia application, and tested actual operations of the integrated system.

  • PDF

Development of Device for the Separation between Touch Panel and LCD Module (터치패널과 LCD 모듈 접착면 분리용 장비 개발)

  • Wang, Wenping;Park, Kyoungseok;Shin, Dongwon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.31-37
    • /
    • 2015
  • Recently, mobile phones have become necessary tools for everyday life. In this study, a device that can serve as a separation between a touch panel and an LCD module in a mobile phone was devised for mass repair processes at a smaill business. We used a wire cutting method to separate the bonding plate area between the modules. The device is composed of DC motors and stepping motors that can deliver a precise cutting motion. The motor control system is connected by individual control modules to a CAN network. The developed device showed excellent performance at high temperature conditions.

Compensation of Thermal Error for the CNC Machine Tools (I) - The Basic Experiment of Compensation Device - (CNC 공작기계의 열변형 오차 보정 (I) - 보정장치 기초실험 -)

  • 이재종;최대봉;곽성조;박현구
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.453-457
    • /
    • 2001
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric and thermal errors of the machine tools. In this study, the compensation device is manufactured in order to compensate thermal error of machine tools under the real-time. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to compensate thermal characteristics under several operating conditions, experiments performed with five gap sensors and manufactured compensation device on the horizontal machining center.

  • PDF

Controlling Position of Virtual Reality Contents with Mouth-Wind and Acceleration Sensor

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.4
    • /
    • pp.57-63
    • /
    • 2019
  • In this paper, we propose a new framework to control VR(Virtual reality) contents in real time using user's mouth-wind and acceleration sensor of mobile device. In VR, user interaction technology is important, but various user interface methods is still lacking. Most of the interaction technologies are hand touch screen touch or motion recognition. We propose a new interface technology that can interact with VR contents in real time using user's mouth-wind method with acceleration sensor. The direction of the mouth-wind is determined using the angle and position between the user and the mobile device, and the control position is adjusted using the acceleration sensor of the mobile device. Noise included in the size of the mouth wind is refined using a simple average filter. In order to demonstrate the superiority of the proposed technology, we show the result of interacting with contents in game and simulation in real time by applying control position and mouth-wind external force to the game.

Preparation of Conductive Leather Gloves for Operating Capacitive Touch Screen Displays (정전용량방식 터치스크린에 작동하는 전도성 가죽장갑 소재의 제조)

  • Hong, Kyung Hwa
    • Fashion & Textile Research Journal
    • /
    • v.14 no.6
    • /
    • pp.1018-1023
    • /
    • 2012
  • Smartphone is integrated into the daily lives of all types of people not even young generation. A touch screen display is a primary input device of a smart phone, a tablet computer, etc. While there are many tough technologies in existence, resistive and capacitive are dominant and currently lead the touch screen panel industry. And a capacitive touch screen panel widely used in smart phones is coated with a material that stores electrical charges. In this study, we tried to manufacture gloves produced with electro-conducting leather as a tool to operate a touch panel screen. Therefore, electrically conductive materials, Polyaniline(PANI), Poly(3,4-ethylenedioxythiophene) (PEDOT), and Carbon nanotubes (CNT) were applied to the surface of leather to be used as a touching operator for capacitive touch screen panel. The leather samples were treated by simple painting method; firstly, they were painted with aqueous solution containing each of the electrically conductive materials and then dried. This cycle was repeated three times. Consequently, the treated leather samples showed electrical conductivity and reasonable working performance to the capacitive touch screen. And, PANI showed the best performance and highest electrical conductivity, and then PEDOT and, CNT in decreasing order. This is because the solubilities of PANI and PEDOT show higher than dispersibility of CNT. Thus, the concentration of conducting polymers was greater than that of CNT in the treating solutions.

A Study on User-Centric Force-Touch Measurement using Force-Touch Cover (포스 터치 커버를 이용한 사용자 중심적 포스 터치 측정에 관한 연구)

  • Nam, ChoonSung;Suh, Min-soo;Shin, DongRyeol
    • Journal of Internet Computing and Services
    • /
    • v.18 no.3
    • /
    • pp.37-48
    • /
    • 2017
  • Touch interface has been introduced as one of the most common input devices that are widely used in the Smart Device. Recently Force-Touch interface, a new approach of input method, having the power recognition mechanism, has been appeared in Smart industries. Force-Touching determining multiple things (the geographical and pressure values of touching point) in one touching act allows users to provide more than one input methods in a limited environments. Force-Touching Device is required different user communicational interaction than other common Smart devices because it is possible to recognize various inputs in the one act. It means that Force-Touching is only able to understand and to use the pressure sensitive values, not other Smart input methods. So, we built Force-Touch-Cover that makes typical Smart-Device to have Force-Touching interfaces. We analysis the accuracy of the Force-Touching-Cover's sensor and also assessment the changes in pressure values depending on the pressure position. Via this Paper, We propose the implement of user-oriented Force-Touching interface that is based on users' feedback as our conclusion.

Design of Ball-based Mobile Haptic Interface (볼 기반의 모바일 햅틱 인터페이스 디자인)

  • Choi, Min-Woo;Kim, Joung-Hyun
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.122-128
    • /
    • 2009
  • In this paper, we present a design and an evaluation of a hand-held ball based haptic interface, named "TouchBall." Using a trackball mechanism, the device provides flexibility in terms of directional degrees of freedom. It also has an advantage of a direct transfer of force feedback through frictional touch (with high sensitivity), thus requiring only relatively small amount of inertia. This leads to a compact hand-held design appropriate for mobile and 3D interactive applications. The device is evaluated for the detection thresholds for directions of the force feedback and the perceived amount of directional force. The refined directionality information should combine with other modalities with less sensory conflict, enriching the user experience for a given application.

  • PDF

Usability Evaluation of the Touch Keys for the Smart Watch (스마트 워치 터치스크린에서의 터치 키에 대한 사용성 연구)

  • Kim, Su Young;Ban, Kimin;Choe, Jaeho;Jung, Eui S.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.3
    • /
    • pp.225-232
    • /
    • 2015
  • The smart watch is the most popular wearable computing device because it takes a form of wristwatch. Many smart watches have adopted the touch screen interface due to the limited size of display. This paper focuses on touch key size and spacing that affect the usability about the touch key of smart watch. The experiments were made for four touch key sizes (width${\times}$height; $5{\times}5$, $5{\times}7$, $7{\times}5$, $7{\times}7mm$) and nine touch key spacing (vertical${\times}$horizontal; $0{\times}0$, $0{\times}1$, $0{\times}3$, $1{\times}0$, $1{\times}1$, $1{\times}3$, $3{\times}0$, $3{\times}1$, $3{\times}3mm$). The completion time, error rate, control discomfort and identification discomfort were measured. The touch key size $7{\times}7$, $7{\times}5$ and the touch key spacing $3{\times}3$, $1{\times}3$ provided the best results in terms of the completion time and the control discomfort, while the square touch key ($7{\times}7$, $5{\times}5$) provided the best performance for the error rate measure. The result of this study can help ergonomically design the touch interface of the smart watch.