• Title/Summary/Keyword: Touch Sensor

Search Result 181, Processing Time 0.022 seconds

Touchpad for Force and Location Sensing

  • Kim, Dong-Ki;Kim, Jong-Ho;Kwon, Hyun-Joon;Kwon, Young-Ha
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.722-728
    • /
    • 2010
  • This paper presents the design and fabrication model of a touchpad based on a contact-resistance-type force sensor. The touchpad works as a touch input device, which can sense contact location and contact force simultaneously. The touchpad is 40 mm wide and 40 mm long. The touchpad is fabricated by using a simple screen printing technique. The contact location is evaluated by the calibration setup, which has a load cell and three-axis stages. The location error is approximately 4 mm with respect to x-axis and y-axis directions. The force response of the fabricated touchpad is obtained at three points by loading and unloading of the probe. The touchpad can detect loads from 0 N to 2 N. The touchpad shows a hysteresis error rate of about 11% and uniformity error rate of about 3%.

Characteristics of Surface Micromachined Capacitive Pressure Sensors for High Temperature Applications (표면 MEMS 기술을 이용한 고온 용량형 압력센서의 특성)

  • Seo, Jeong-Hwan;Noh, Sang-Soo;Kim, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.317-322
    • /
    • 2010
  • This paper reports the fabrication and characterization of surface micromachined poly 3C-SiC capacitive pressure sensors on silicon wafer operable in touch mode and normal mode for high temperature applications. FEM(finite elements method) simulation has been performed to verify the analytical mode. The sensing capacitor of the capacitive pressure sensor is composed of the upper metal and the poly 3C-SiC layer. Measurements have been performed in a temperature range from $25^{\circ}C$ to $500^{\circ}C$. Fabrication process of designed poly 3C-SiC touch mode capacitive pressure sensor was optimized and would be applicable to capacitive pressure sensors that are required high precision and sensitivity at high pressure and temperature.

Design and Implementation of Tangible Interface Using Smart Puck System

  • Bak, Seon Hui;Lee, Jeong Bae;Kim, Jeong Ho;Lee, Hee-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.47-53
    • /
    • 2015
  • In this paper, we propose a novel tangible interface system whose system does not use the expensive hardware is introduced. This proposed tangible interface is used on the table top capacitive multi touch-screen. The tangible interface apparatus which is called smart puck has sanguine arduino compatible board. The board has a Cds photo-sensing sensor and the EPP8266 WiFi module. The Cds sensor decodes the photometric PWM signals from the system and sends corresponding information to the system via TCP/IP. The system has a server called MT-Server to communicate with the smart pucks. The tangible interface shows reliable operation with fast response that is compatible to the expensive traditional devices in the market.

Development of English word learning contents using touch sensor based on S4A (S4A 기반의 터치센서를 이용한 영어단어 학습용 콘텐츠 개발)

  • Wi, Ji-Yeon;Lee, Jun-Hyeong;Lee, Hyeong-Ok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.317-320
    • /
    • 2017
  • S4A (Scratch For Arduino) is a program that controls to Arduino with scratch. In this paper, We developed a simple game form for learning contents and using touch sensor that composed of scratch language based on S4A. We used background music and scores to motivate and interest that beginning to learn English for students.

  • PDF

Investigations of process factors in the sensitivity of embedded digital switching TSP

  • Han, Sang-Youn;Oh, Keun-Chan;Seong, Dong-Gi;Ham, Yeon-Sik;Lyu, Jae-Jin;Cho, Young-Je
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1531-1534
    • /
    • 2009
  • Effect of process factors on the sensitivity of inner-type digital switching TSP was analyzed. From these results, we have successfully fabricated inner-type digital switching TSP embedded in 3.2-inch WQVGA PLS mode LCD panel. During many factors, TFT sensor structure for reducing the PI thickness and a separation distance of $0.3{\mu}m$ between the conductive column spacer (C/S) and TFT sensor were essential. Glass thickness and main C/S density were also important factors. This technology can be applied to wide angle of view hand-held phones, personal digital assistants (PDAs), and tablet PCs.

  • PDF

Arc welding robot controller (아크 용접 로보트 제어기)

  • 김성권;김동일;황찬영;윤명균
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.270-275
    • /
    • 1993
  • In this paper, the arc welding robot controller using a touch sensor and a arc sensor is presented. The controller is composed of robot controller parts for moving torch, and arc welding controller for welding and tracking. In the controller, an compensated data is generated to control robot trajectory and seam tracking by the arc sensor function. The data is obtained by integration of arc current. Experimental results are presented confirming the controller performance.

  • PDF

Implementation of 24-Channel Capacitive Touch Sensing ASIC (24 채널 정전 용량형 터치 검출 ASIC의 구현)

  • Lee, Kyoung-Jae;Han, Pyo-Young;Lee, Hyun-Seok;Bae, Jin-Woong;Kim, Eung-Soo;Nam, Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.5
    • /
    • pp.34-41
    • /
    • 2011
  • This paper presents a 24 channel capacitive touch sensing ASIC. This ASIC consists of analog circuit part and digital circuit part. Analog circuits convert user screen touch into electrical signal and digital circuits represent this signal change as digital data. Digital circuit also has an I2C interface for operation parameter reconfiguration from host machine. This interface guarantees the stable operation of the ASIC even against wide operation condition change. This chip is implemented with 0.18 um CMOS process. Its area is about 3 $mm^2$ and power consumption is 5.3mW. A number of EDA tools from Cadence and Synopsys are used for chip design.

Human Touching Behavior Recognition based on Neural Network in the Touch Detector using Force Sensors (힘 센서를 이용한 접촉감지부에서 신경망기반 인간의 접촉행동 인식)

  • Ryu, Joung-Woo;Park, Cheon-Shu;Sohn, Joo-Chan
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.10
    • /
    • pp.910-917
    • /
    • 2007
  • Of the possible interactions between human and robot, touch is an important means of providing human beings with emotional relief. However, most previous studies have focused on interactions based on voice and images. In this paper. a method of recognizing human touching behaviors is proposed for developing a robot that can naturally interact with humans through touch. In this method, the recognition process is divided into pre-process and recognition Phases. In the Pre-Process Phase, recognizable characteristics are calculated from the data generated by the touch detector which was fabricated using force sensors. The force sensor used an FSR (force sensing register). The recognition phase classifies human touching behaviors using a multi-layer perceptron which is a neural network model. Experimental data was generated by six men employing three types of human touching behaviors including 'hitting', 'stroking' and 'tickling'. As the experimental result of a recognizer being generated for each user and being evaluated as cross-validation, the average recognition rate was 82.9% while the result of a single recognizer for all users showed a 74.5% average recognition rate.

Thermal Deformation Characteristics of the Adaptive Machine Tools under Change of Thermal Environment (열적 환경변화에 의한 공작기계의 구조적 특성)

  • 이재종;이찬홍;최대봉;박현구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1023-1027
    • /
    • 2000
  • In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to analyze the thermal characteristics under several operating conditions, experiments performed with the touch probe unit and five gap sensors on the vertical and horizontal machining centers.

  • PDF