• 제목/요약/키워드: Total soil carbon

검색결과 375건 처리시간 0.022초

The Relationship between Microbial Characteristics and Glomalin Concentrations of Controlled Horticultural Soils in Gyeongnam Province

  • Kim, Min Keun;Ok, Yong Sik;Heo, Jae-Young;Choi, Si-Lim;Lee, Sang-Dae;Shin, Hyun-Yul;Kim, Je-Hong;Kim, Hye Ran;Lee, Young Han
    • 한국토양비료학회지
    • /
    • 제47권2호
    • /
    • pp.107-112
    • /
    • 2014
  • Glomalin has been suggested as an enhancer for soil stability by promoting the aggregation. In this study, we examined the concentrations of glomalin and microbial characteristics in 25 controlled horticultural soils sampled from Gyeongnam Province. Total glomalin had a significant positive correlation with soil organic matter (p < 0.01), soil microbial biomass carbon (p < 0.05), and dehydrogenase activity (p < 0.05) in controlled horticultural soils. In addition, the total glomalin had a significant positive correlation with concentrations of total fatty acid methyl esters, Gram-negative and Gram-positive bacteria, fungi, and arbuscular mycorrhizal fungi in controlled horticultural soils (p < 0.001). In conclusion, the concentration of total glomalin could be an indicator of microbial biomass richness for sustainable agriculture in controlled horticultural soils.

충주지역(忠州地域)의 신갈나무와 굴참나무 천연림(天然林) 생태계(生態系)의 지상부(地上部) 및 토양(土壤) 중(中) 탄소고정(炭素固定)에 관(關)한 연구(硏究) (Aboveground and Soil Carbon Storages in Quercus mongolica and Quercus variabilis Natural Forest Ecosystems in Chungju)

  • 박관수
    • 한국산림과학회지
    • /
    • 제88권1호
    • /
    • pp.93-100
    • /
    • 1999
  • 충청북도 충주지역에서 생육하는 평균수령 39년생 신갈나무림과 평균수령 40년생 굴참나무 천연림 생태계의 지상부와 토양중 탄소고정량을 조사하기 위하여 임분별 10주씩 총 20주의 표본목을 선정 벌목하고 토양시료를 채취하였다. 신갈나무림과 굴참나무림의 지상부 탄소고정량을 추정하기 위하여 방정식 모형 $Wt=aD^b$를 사용하여 추정한 지상부 총 탄소고정량은 신갈나무림에서 48.85tonC/ha와 굴참나무림에서 57.49tonC/ha으로 신갈나무림보다 굴참나무림에서 높은 탄소고정량을 보였다. 부위별 탄소함량 구성비는 신갈나무림과 굴참나무림 모두에서 수간목부, 생지부, 수피, 그리고 잎의 순으로 높았다. 연간 고정할 수 있는 탄소량은 신갈나무림이 5.88tonC/ha. 굴참나무림이 5.12tonC/ha으로 굴참나무림보다 신갈나무림에서 높게 나타났다. 토양내 탄소함량은 신갈나무림과 굴참나무림이 0-50cm의 깊이에서 비슷한 값인 67.0tonClha와 67.8tonC/ha이었으며 소나무군락 54.7tonC/ha보다 높게 나타났으나 통계적 유의성은 없는 것으로 나타났다.

  • PDF

Effects of Experimental Drought on Soil CO2 Efflux in a Larix Kaempferi Stand

  • Kim, Beomjeong;Yun, Youngjo;Choi, Byoungkoo
    • Journal of Forest and Environmental Science
    • /
    • 제34권3호
    • /
    • pp.253-257
    • /
    • 2018
  • Climate models forecast more frequent and a longer period of drought events which may impact forest soil carbon dynamics, thereby altering the soil respiration (SR) rate. We examine the simulated drought effects on soil $CO_2$ effluxes from soil surface partitioning heterotrophic and autotrophic soil respiration sources. Three replicates of drought plots ($6{\times}6m$) were constructed with the same size of three control plots. We examined the relation between $CO_2$ and soil temperature and soil moisture, each being measured at a soil depth of 15 cm. We also compared which factor affected $CO_2$ efflux more under drought conditions. Total SR, autotrophic respiration (AR) and heterotrophic respiration (HR) were positively correlated with soil temperature (p < 0.05), and the relationships were stronger in roof plots than in control plots. Total SR, AR, and HR were negatively correlated only in roof plots, and the only HR showed a significant correlation (p < 0.05, r = -0.59). Soil respiration rates were more influenced by soil temperature than by soil moisture, and this relationship was more evident under drought conditions.

하수슬러지의 토양개량재 적용시 유기인계 농약의 흡착능력에 관한 연구

  • 임은진;이재영
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.125-130
    • /
    • 2004
  • This study has been assessed the influence of applying sewage sludge to soil amendments on the sorption properties, and leaching potential of three commonly used organophosphorus pesticides, Diazinon, Fenitrothion, and Chlorpyrifos. A sandy soil with a low content of organic carbon was treated with sewage sludge with a ratio sandy soil : sludge ratio of 30:1. The sorption was determined with the batch equilibrium technique. The sorption isotherms could be described by Freundlich equation. The Freundlich constant, K value which measures sorption capacity, were 3.97, 9.94, 22.48 for Diazinon, Fenitrothion, Chlorpyrifos in non-amended soil. But in amended soil, K value was 12.58, 28.47, and 61.21 for Diazinon, Fenitrothion, and Chlorpyrifos. The overall effect of sewage sludge addition to soil was to increase pesticides adsorption, due to the high sorption capacity of the organic matter. The effect of sludge on tile leaching of pesticides in the soil was studied using packed soil columns. Total recoveries of pesticides in soil and leachate with leaching in soil column, were in the range of about 73~84%, was reduced with the passage of time. Diazinon moved more rapidly than Chlorpyrifos in the unamended soil due to greater sorption and lower water solubility of Chlorpyrifos. Total amounts of pesticides leached from the sewage sludge amended soils were significantly reduced when compared with unamended soils. This reduction may be mainly due to and increase in sorption in amended soils, as a consequence of the increase in the organic matter content.

  • PDF

목초재배지 및 벼논 관리 변화에 따른 토양 탄소 및 미생물 활성도 (Soil Carbon and Microbial Activity Influenced by Pasture and Rice Paddy Management)

  • 유가영;김현진;김예솔;정민웅
    • 한국토양비료학회지
    • /
    • 제45권3호
    • /
    • pp.435-443
    • /
    • 2012
  • 본 연구는 논과 목초지에서 관리방법에 따른 토양탄소의 변화에 대해 알아보았다. 논에서는 총탄소 농도의 변화에 비하여 입자상 탄소농도의 변화가 IRG 처리에 따라 더 민감하게 반응하였으며, 이에 입자상 탄소농도는 관리방법 변화에 따른 조기지시자로 활용될 수 있음을 시사하였다. 반면, 초지에서는 입자상 탄소농도의 변화가 총탄소 농도 변화에 비해 오히려 더 민감하지 않게 반응하였는데, 이는 본 연구방법에 따라 분류한 입자상 탄소가 초지와 같은 생태계에서는 의미 있는 탄소부분이 아닐 수 있음을 시사한다. 토양탄소저장을 살펴보았을 때 논의 경우는 겨울동안 IRG 목초작물을 재배하는 관리를 3년 이상 지속한 서천 및 장흥에서 유의한 증가가 있었다. 토양탄소의 유의한 증가는 농도뿐만 아니라 용적밀도를 고려하여 동일 부피 토양을 비교한 경우 및 동일 질량 토양을 비교한 경우 모두 유의하게 관찰되었는데, 이는 IRG 재배에 따른 토양탄소 저장의 증가가 단순히 표토에 축적된 식물체 유기물에 의한 일시적 농도의 증가가 아닌 토심 0-15 cm 깊이의 토양탄소의 증가였음을 시사한다. 목초지에서는 목초지 조성이후 3년, 5년, 7년, 10년이 지남에 따라 표토 (0-5 cm)에서의 탄소농도 증가가 현저하였다. 반면 5-15 cm 깊이의 토양에서는 이러한 증가경향이 뚜렷하지 않거나 오히려 감소하기도 하였다. 이 결과 토양내 저장되어 있는 탄소량을 용적밀도를 고려하고 동일 질량을 비교한 경우에 시간에 따른 뚜렷한 증가경향이 흐릿해짐을 알 수 있었다. 이는 초지 조성시기가 오래됨에 따라 토양의 용적밀도가 높아짐으로 인해 용적밀도 증가에 따른 토양질량의 증가분을 보정하였을 때 나타나는 결과로써, 초지조성연도가 오래될수록 저장된 탄소의 양이 선형적으로 증가할 것이라는 기존의 통념을 수정할 필요가 있음을 시사한다. IPCC (2006)에서 제안한 지침에 따르면, 토양탄소는 20년 동안 직선적인 증가를 한다는 가정을 하였는데, 본 연구의 결과에서 특정 관리방법 착수시점에서 초기 5-7년 동안토양탄소는 빠르게 증가하고, 증가속도는 그 이후에 느려지고 있음을 보여준다. 이는 지속적 토양탄소 저장 증가를 위해서는 적절한 토양관리 및 유기물 관리를 해야 한다는 점을 의미하기도 한다. 한편, 토양 내 FDA 활성도에 비추어본 미생물 활성도는 논의 경우는 IRG 처리구에서 대조구에 비해 유의하게 낮게 나타났으며 초지의 경우는 조성연도별 유의한 차이가 없었다. 이는 FDA 활성도가 토양의 관리방법별 차이에 따른 토양 질의 변화를 표현하기에는 민감하거나 변별력이 높은 지시자는 아님을 의미하며, 미생물 생체량이나 토양호흡량 등과 함께 측정하여 보조적인 자료로 활용하는 것이 좋다고 판단된다.

미래 기후 변화 시나리오에 따른 환북극의 변화 (Projection of Circum-Arctic Features Under Climate Change)

  • 이지연;조미현;고영대;김백민;정지훈
    • 대기
    • /
    • 제28권4호
    • /
    • pp.393-402
    • /
    • 2018
  • This study investigated future changes in the Arctic permafrost features and related biogeochemical alterations under global warming. The Community Land Model (CLM) with biogeochemistry (BGC) was run for the period 2005 to 2099 with projected future climate based on the Special Report on Emissions Scenarios (SRES) A2 scenario. Under global warming, over the Arctic land except for the permafrost region, the rise in soil temperature led to an increase in soil liquid and decrease in soil ice. Also, the Arctic ground obtained carbon dioxide from the atmosphere due to the increase in photosynthesis of vegetation. On the other hand, over the permafrost region, the microbial respiration was increased due to thawing permafrost, resulting in increased carbon dioxide emissions. Methane emissions associated with total water storage have increased over most of Arctic land, especially in the permafrost region. Methane releases were predicted to be greatly increased especially near the rivers and lakes associated with an increased chance of flooding. In conclusion, at the end of $21^{st}$ century, except for permafrost region, the Arctic ground is projected to be the sink of carbon dioxide, and only permafrost region the source of carbon dioxide. This study suggests that thawing permafrost can further to accelerate global warming significantly.

Relationship between Plant Species Covers and Soil Chemical Properties in Poorly Controlled Waste Landfill Sites

  • Kim, Kee-Dae;Lee, Eun-Ju
    • Journal of Ecology and Environment
    • /
    • 제30권1호
    • /
    • pp.39-47
    • /
    • 2007
  • The relationships between the cover of herbaceous species and 15 soil chemical properties (organic carbon contents, total N, available P, exchangeable K, Na, Ca and Mg, HCl-extractable Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in nine poorly controlled waste landfill sites in Korea were examined by correlation analysis and multiple regression equations. Species showed different patterns of correlation between their cover values and soil chemical properties. The cover of Ambrosia artemisiifolia var. elatior, Aster subulatus var. sandwicensis and Erechtites hieracifolia were negatively correlated with the contents of Fe, Mn and Ni within landfill soils. Total cover of all species in quadrats was positively correlated with the contents of Cd and negatively correlated with the contents of Mn and Fe from stepwise regression analysis with 15 soil properties. Canonical correspondence analysis demonstrated that the distribution of native and exotic plants on poorly controlled landfills was significantly influenced by the contents of Na and Ca in soils, respectively.

폐탄광 산림복구지 관리방안 도출을 위한 산림복구 후 시간경과에 따른 임분탄소저장량 평가 (Assessment of Carbon Storage Capacity of Stands in Abandoned Coal Mine Forest Rehabilitation Areas over time for its Development of Management Strategy)

  • 정문호;박관인;김지혜;지원현
    • 한국환경과학회지
    • /
    • 제32권4호
    • /
    • pp.233-242
    • /
    • 2023
  • The objective of this study was to develop a management strategy for the recovery of carbon storage capacity of abandoned coal mine forest rehabilitation area. For the purpose, the biomass and stand carbon storage over time after the forest rehabilitation by tree type for Betula platyphylla, Pinus densiflora, and Alnus hirsuta trees which are major tree species widely planted for the forest rehabilitation in the abandoned coal mine were calculated, and compared them with general forest. The carbon storage in abandoned coal mine forest rehabilitation areas was lower than that in general forests, and based on tree species, Pinus densiflora stored 48.9%, Alnus hirsuta 41.1%, and Betula platyphylla 27.0%. This low carbon storage is thought to be caused by poor growth because soil chemical properties, such as low TOC and total nitrogen content, in the soil of abandoned coal mine forest rehabilitation areas, were adverse to vegetation growth compared to those in general forests. DBH, stand biomass, and stand carbon storage tended to increase after forest rehabilitation over time, whereas stand density decreased. Stand' biomass and carbon storage increased as DBH and stand density increased, but there was a negative correlation between stand density and DBH. Therefore, after forest rehabilitation, growth status should be monitored, an appropriate growth space for trees should be maintained by thinning and pruning, and the soil chemical properties such as fertilization must be managed. It is expected that the carbon storage capacity the forest rehabilitation area could be restored to a level similar to that of general forests.

Kinetic Responses of Soil Carbon Dioxide Emission to Increasing Urea Application Rate

  • Lee, Sun-Il;Lim, Sang-Sun;Lee, Kwang-Seung;Kwak, Jin-Hyeob;Jung, Jae-Woon;Ro, Hee-Myoung;Choi, Woo-Jung
    • 한국환경농학회지
    • /
    • 제30권2호
    • /
    • pp.99-104
    • /
    • 2011
  • BACKGROUND: Application of urea may increase $CO_2$ emission from soils due both to $CO_2$ generation from urea hydrolysis and fertilizer-induced decomposition of soil organic carbon (SOC). The objective of this study was to investigate the effects of increasing urea application on $CO_2$ emission from soil and mineralization kinetics of indigenous SOC. METHODS AND RESULTS: Emission of $CO_2$ from a soil amended with four different rates (0, 175, 350, and 700 mg N/kg soil) of urea was investigated in a laboratory incubation experiment for 110 days. Cumulative $CO_2$ emission ($C_{cum}$) was linearly increased with urea application rate due primarily to the contribution of urea-C through hydrolysis to total $CO_2$ emission. First-order kinetics parameters ($C_0$, mineralizable SOC pool size; k, mineralization rate) became greater with increasing urea application rate; $C_0$ increased from 665.1 to 780.3 mg C/kg and k from 0.024 to 0.069 $day^{-1}$, determinately showing fertilizer-induced SOC mineralization. The relationship of $C_0$ (non-linear) and k (linear) with urea-N application rate revealed different responses of $C_0$ and k to increasing rate of fertilizer N. CONCLUSION(s): The relationship of mineralizable SOC pool size and mineralization rate with urea-N application rate suggested that increasing N fertilization may accelerate decomposition of readily decomposable SOC; however, it may not always stimulate decomposition of non-readily decomposable SOC that is protected from microbial decomposition.

계룡산 산림토양내의 수종 Trichoderma spp.의 분포 특성에 관하여 (Seasonal and Spatial Distribution of Trichoderma species in Forest Soils of Mt. Geryongsan)

  • 이영하;홍순우
    • 미생물학회지
    • /
    • 제22권3호
    • /
    • pp.157-165
    • /
    • 1984
  • Seasonal and spatial variations in propagule numbers of Trichoderma species were investigated every other month for one year in deciduous and coniferous forest soils and evaluated the relationships of Trichoderma spp. populations to soil environmental factors. The total population of Trichoderma spp. increased until summer and then declined until winter. The yearly mean frequency of Trichoderma spp. exceeded 1.4% of total fungal propagules in two sites. Decreases of absolute an relative propagule numbers of Trichoderma spp. with increasing soil depth were found and variation in Trichoderma spp. propagules caused by differences in soil depth ($0{\sim}50cm$) was greater than that caused by differences in sampling time. The most common species occurring in two sites was T. viride, followed by T. polysporum, T. koningii, and T. hamatum. Individual species of Trichoderma showed diferent abundance trend in accordance with sampling time. T. viride was dorminant from spring to autumn, while T. polysporum dominated over the other speicies in winter. Variations in propagule number of Trichoderma sppp. were principally mediated by the actions of biotic environmental factors rather than by the direct effects of abiotic factors. In multiple-regression analyses, 48% of the total vaiation in Trichoderma spp. propagules in deciduous site could be accounted for by total fungal propagules and soil CMCase actvity. In coniferous site, 65% of total variation could be accounted for by total fungal and bacterial propagules, moisture content and organic carbon content.

  • PDF