• Title/Summary/Keyword: Total soil carbon

Search Result 372, Processing Time 0.048 seconds

Revegetation and Secondary Succession of the Burned Area in Mt. Sanseung (山城山 山火跡地의 植生再生과 二次邊의)

  • Kim, Wown;Young Ho Cho
    • The Korean Journal of Ecology
    • /
    • v.7 no.4
    • /
    • pp.203-207
    • /
    • 1984
  • This report is an investigation of the revegetation and secondary succession in the burned area of Mt. Sanseung in Taegu region. The forest fire took place in December, 1977. The survey was conducted eight times, -three times from October 1, 1983 to October 3, the same year and five times from August 10, 1984 to August 15, the same year. The floristic compositions in the sampled sites constituted 25 kinds of vascular plants and 21 kinds in the burned area and the unburned area respectively. The biological type in both the burned and unburned areas was H-D1-R5-e type, which is generally common to other areas (Taegu, Kyungpook, Chung Buk and Kangweon areas). In the burned area dominant species were Carex humilisvar. nana, Arundinella hirata and Quercus serrata and on the other hand, in the unburned area Pinus densiflora, Carex humilis var. nana, Rhododendron mucrfonulatum var. ciliatum and Quercus serrata. The species diversity diversity index(H) and eveness index(e) of the burned area were higher than those unburned area. Degree of succession (DS) was 650 in the burned area at the 6th years after the fires and 962 in the unburned area. THe vegetation of the burned area was slowly recovered as of 1984 compared with each other. According to the analysis of the soil preperties, pH, available phosphorus and exchangeable potassium were increased, but organic matter, total nitrogen and total organic carbon were decreased. It is assumed that these results were due to the forest fire.

  • PDF

Quantitative Estimation of PM-10 Source Contribution in Gumi City by the Positive Matrix Factorization Model (PMF를 응용한 구미시 PM-10 오염원의 정량적 기여도 추정연구)

  • Hwang, In-Jo;Cho, Young-Hyuck;Choi, Woo-Gun;Lee, Hye-Moon;Kim, Tae-Oh
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.1
    • /
    • pp.100-107
    • /
    • 2008
  • The objective of this study was to quantitatively estimate PM-10 source contribution in Gumi City, Korea. Ambient PM-10 samples were collected by a high volume air sampler, which operated for 84 different days with a 24-h sampling basis, from June 14,2001 though May 19, 2003. The filter samples were analyzed for determining 13 inorganic elements, 3 anions, and a total carbon. The study has intensively applied a receptor model, the PMF (Positive Matrix Factorization) model. The results from PMF modeling indicated that a total of seven sources were independently identified and each source was contributed to the ambient Gumi City from secondary sulfate (34%), motor vehicle (26%), soil relation (5%), field burning (3%), industrial relation (3%), secondary nitrate (22%), and incinration (7%) in terms of PM-10 mass, respectively.

Biomass Estimation of Gwangneung Catchment Area with Landsat ETM+ Image

  • Chun, Jung Hwa;Lim, Jong-Hwan;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.591-601
    • /
    • 2007
  • Spatial information on forest biomass is an important factor to evaluate the capability of forest as a carbon sequestrator and is a core independent variable required to drive models which describe ecological processes such as carbon budget, hydrological budget, and energy flow. The objective of this study is to understand the relationship between satellite image and field data, and to quantitatively estimate and map the spatial distribution of forest biomass. Landsat Enhanced Thematic Mapper (ETM+) derived vegetation indices and field survey data were applied to estimate the biomass distribution of mountainous forest located in Gwangneung Experimental Forest (230 ha). Field survey data collected from the ground plots were used as the dependent variable, forest biomass, while satellite image reflectance data (Band 1~5 and Band 7), Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and RVI (Ratio Vegetation Index) were used as the independent variables. The mean and total biomass of Gwangneung catchment area were estimated to be about 229.5 ton/ha and $52.8{\times}10^3$ tons respectively. Regression analysis revealed significant relationships between the measured biomass and Landsat derived variables in both of deciduous forest ($R^2=0.76$, P < 0.05) and coniferous forest ($R^2=0.75$, P < 0.05). However, there still exist many uncertainties in the estimation of forest ecosystem parameters based on vegetation remote sensing. Developing remote sensing techniques with adequate filed survey data over a long period are expected to increase the estimation accuracy of spatial information of the forest ecosystem.

Opto-Chemical Characteristics of Visibility Impairment Using Semi-Continuous Aerosol Monitoring in an Urban Area during Summertime (에어로졸의 준실시간 관측에 의한 여름철 도시지역 시정 감쇄 현상의 광ㆍ화학적인 특성 분석)

  • 김경원;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.647-661
    • /
    • 2003
  • For continuous monitoring of atmospheric visibility in the city of Kwanaju, Korea, a transmissometer system consisting of a transmitter and a receiver was installed at a distance of 1.91 km across the downtown Kwanaju. At the transmitter site an integrating nephelometer and an aethalometer were also installed to measure the scattering and absorption coefficients of the atmosphere, respectively. At the receiver site. an URG PM$_{2.5}$ cyclone sampler and an URG-VAPS (Versatile Air Pollutant Sampler) with three filter packs and two denuders were used to collect both PM$_{2.5}$ and PM$_{10}$ samples at a 2-hour or 12-hour sampling interval for aerosol chemical analysis. Sulfate, organic mass by carbon (OMC), nitrate, elemental carbon (EC) components of fine aerosol were the major contributors to visibility impairment. Diurnal variation of visibility during best-case days showed rapid improvement in the morning hours, while it was delayed until afternoon during the worst-case days. Aerosol mass concentration of each aerosol component for the worst-case was calculated to be 11.2 times larger than the best-case for (NH$_4$)$_2$SO$_4$(NHSO), 19.0 times for NH$_4$NO$_3$ (NHNO), 2.2 times for OMC, respectively. Also result shows that elemental carbon and fine soil (FS) were 3.7 and 2.2 times more than those of best-case. respectively- Sum of total contributions of wet NHSO and NHNO to light extinction was calculated to be 301 Mm$^{-1}$ for the worst-case. However, sum of contributions by dry NHSO and NHNO was calculated to be 123 Mm$^{-1}$ for the best case. Mass extinction efficiencies of fine and coarse particles were calculated to be 5.8$\pm$0.3 $m^2$/g and 1.8$\pm$0.1 $m^2$/g, respectively.ely.

Sorption of PAHs by Soil Humins and Effect of Soil Inorganic Matrixs (PAHs의 토양휴민과의 흡착특성 및 토양 무기물의 영향 해석)

  • Lim, Dong-Min;Lee, Seung-Sik;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1337-1346
    • /
    • 2006
  • Soil humin is the insoluble fraction of humic materials and play an important roles in the irreversible sorption of hydrophobic organic contaminants onto soil particles. However, there have been limited knowledge about the sorption and chemical properties of humin due to the difficulties in its separation from the inorganic matrix(mainly clays and oxides). In this study, de-ashed soil humins($Hu_1-Hu_6$) were isolated from a soil residues(Crude Hu) after removing alkali-soluble organic fractions followed by consecutive dissolution of the mineral matrix with 2%-HF for 2 hr. The humin samples were characterized by elemental analysis and $^{13}C$ NMR spectroscopic method and their sorption-desorption behavior for 1-naphthol were investigated from aqueous solution. The results were compared one another and that with peat humin. $^{13}C$ NMR spectra features indicate that the soil humin molecules are mainly made up of aliphatic carbons(>80% in total carbon) including carbohydrate, methylene chain. Freundlich sorption parameter, n was increased from 0.538 to 0.697 and organic carbon-normalized sorption coefficient(log $K_{OC}$) values also increased from 2.43 to 2.74 as inorganic matrix of the soil humin removed by HF de-ashing. The results suggest that inorganic phase in humin plays an important, indirect role in 1-naphthol sorption and the effects on the sorption non-linearity and intensity are analyzed by comparison between the results of soil humin and peat humin. Sorption-desorption hysteresis were also observed in all the humin samples and hysteresis index(HI) at low solute concentration($C_e$=0.1 mg/L) are in order of Peat humin(2.67)>De-ashed humin(0.74)>Crude Hu(0.59).

Evaluation of Methane Oxidation Potentials of Alpine Soils Having Different Forestation Structure in Gajwa mountain (경상남도 가좌산의 소나무, 참나무, 밤나무 우점 산림토양 별 메탄 산화능 평가)

  • Park, Yong Kwon;Kim, Sang Yoon;Gwon, Hyo Suk;Kim, Pil Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.306-313
    • /
    • 2014
  • BACKGROUND: Forest soils contain microbes capable of consuming atmospheric methane ($CH_4$), an amount matching the annual increase in $CH_4$ concentration in the atmosphere. However, the effect of plant residue production by different forest structure on $CH_4$ oxidation is not studied in Korea. The objective of this study was to evaluate the effect of Korean alpine soils having different forestation structure on $CH_4$ uptake rates. METHODS AND RESULTS: the $CH_4$ flux was measured at three sites dominated with pine, chestnut and oak trees in southern Korea. The $CH_4$ uptake potentials were evaluated by a closed chamber method for a year. The $CH_4$ uptake rate was the highest in the pine tree soil ($1.05mg/m^2/day$) and then followed by oak ($0.930mg/m^2/day$) and chestnut trees ($0.497mg/m^2/day$). The $CH_4$ uptake rates were highly correlated to soil organic matter and moisture contents, and total microbial and methanotrophs activities. Different with the general concent, there was no any correlation between $CH_4$ oxidation rates, and soil temperature and labile carbon concentrations, irrespective with tree species. CONCLUSION: Conclusively, the methane oxidation rate was correlated in positive manner with organic matter, abundance of methanotrophs. Methane oxidation was different among tree species. This results could be used to estimate methane oxidation rate in forest of Korea after complementing information about statistical data and methane oxidation of other site.

Estimation of National Greenhouse Gas Emissions in Agricultural Sector from 1990 to 2013 - Focusing on the Crop Cultivation - (1990년부터 2013년까지 농업 분야 국가 온실가스 배출량 평가 - 경종부문 중심으로 -)

  • Choi, Eun Jung;Jeong, Hyun Cheol;Kim, Gun Yeob;Lee, Sun-il;Lee, Jong Sik
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.443-450
    • /
    • 2016
  • The major greenhouse gases (GHGs) in agricultural sector are methane ($CH_4$), nitrous oxide ($N_2O$), carbon dioxide ($CO_2$). GHGs emissions are estimated by pertinent source category in a guideline book from Intergovernmental Panel on Climate Change (IPCC) such as methane from rice paddy, nitrous oxide from agricultural soil and crop residue burning. The methods for estimation GHGs emissions in agricultural sector are based on 1996 and 2006 IPCC guideline, 2000 and 2003 Good Practice Guidance. In general, GHG emissions were calculated by multiplying the activity data by emission factor. The total GHGs emission is $10,863Gg\;CO_2-eq$. from crop cultivation in agricultural sector in 2013. The emission is divided by the ratio of greenhouse gases that methane and nitrous oxide are 64% and 34%, respectively. Each gas emission according to the source categories is $7,000Gg\;CO_2-eq$. from rice paddy field, $3,897Gg\;CO_2-eq$. from agricultural soil, and $21Gg\;CO_2-eq$. from field burning, respectively. The GHGs emission in agricultural sector had been gradually decreased from 1990 to 2013 because of the reduction of cultivation. In order to compare with indirect emissions from agricultural soil, each emission was calculated using IPCC default factors (D) and country specific emission factors (CS). Nitrous oxide emission by CS applied in indirect emission, as nitrogen leaching and run off, was lower about 50% than that by D.

Comparisons of Nutrient Concentration of Leaves, Roots, and Soils in Three Bamboo Stands

  • Baek, Gyeongwon;Yoon, Jun-Hyuck;Bae, Eun Ji;Lee, Jihyun;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.108-114
    • /
    • 2022
  • In bamboo, the nutrient status of tissues and associated soil is an important indicator of nutrient uptake by various bamboo species. In this study, the nutrient concentrations of leaves, roots, and mineral soil at 0-10 cm depths were examined in three bamboo stands [Phyllostachys bambusoides S ieb. et Zucc, Phyllostachys nigra var. henonis Stapf ex. Rendle, and Phyllostachys pubescens (Mazel) Ohwi] at a broad regional scale in southern Korea. In the three bamboo species, species-specific differences were observed in the carbon (C) and calcium (Ca) concentrations of leaves and in the nitrogen (N) and magnesium (Mg) concentrations of roots. Ca concentrations in leaves were significantly higher in P. bambusoides (11.94 g Ca kg-1) than in P. pubescens (7.83 g Ca kg-1), whereas potassium (K) concentrations were lowest in P. bambusoides among the three bamboo species. N concentrations in the roots were significantly lower in P. pubescens (5.23 g N kg-1) than in P. nigra var. henonis (7.72 g N kg-1). In contrast to bamboo tissues, soil nutrients, such as total N, organic C, exchangeable Ca2+, and Mg2+, did not differ significantly among the bamboo species. These results suggest that species-specific practices will be required for nutrient management of bamboo stands because nutrient concentrations vary considerably in the tissues of the three studied species.

Carbon and Nitrogen Stocks of Trees and Soils in a 'Niitaka' Pear Orchard ('신고'배 재배지 내 수체 및 토양의 탄소 및 질소 저장량)

  • Lee, Tae-Kyu;Choi, Jang-Jeon;Kim, Jong-Sung;Lee, Han-Chan;Ro, Hee-Myong
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.828-832
    • /
    • 2013
  • To report country-specific carbon and nitrogen stocks data in a pear orchard by Tier 3 approach of 2006 IPCC guidelines for national greenhouse gas inventories, an experimental pear orchard field of the Pear Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration, Naju, Korea ($35^{\circ}01^{\prime}27.70N$, $126^{\circ}44^{\prime}53.50^{\prime\prime}E$, 6 m altitude), where 15-year-old 'Niitaka' pear (Pyrus pyrifolia Nakai cv. Niitaka) trees were planted at a $5.0m{\times}3.0m$ spacing on a Tatura trellis system, was chosen to assess the total amount of carbon and nitrogen stocks stored in the trees and orchard soil profiles. At the sampling time (August 2012), three trees were uprooted, and separated into six fractions: trunk, main branches, lateral branches (including shoots), leaves, fruits, and roots. Soil samples were collected from 0 to 0.6 m depth at 0.1 m intervals at 0.5 m from the trunk. Dry mass per tree was 4.7 kg for trunk, 13.3 kg for main branches, 13.9 kg for lateral branches, 3.7 kg for leaves, 6.7 kg for fruits, and 14.1 kg for roots. Amounts of C and N per tree were respectively 2.3 and 0.02 kg for trunk, 6.4 and 0.07 kg for main branches, 6.4 and 0.09 kg for lateral branches, 6.5 and 0.07 kg for roots, 1.7 and 0.07 kg for leaves, and 3.2 and 0.03 kg for fruits. Carbon and nitrogen stocks stored between the soil surface and a depth of 60 cm were 138.29 and $13.31Mg{\cdot}ha^{-1}$, respectively, while those contained in pear trees were 17.66 and $0.23Mg{\cdot}ha^{-1}$ based on a tree density of 667 $trees{\cdot}ha^{-1}$. Overall, carbon and nitrogen stocks per hectare stored in a pear orchard were 155.95 and 13.54 Mg, respectively.

Retention properties of organic matters and nutrients in wetland soils and coastal sediments (습지토양 및 연안퇴적물의 유기물질 및 영양물질 보유 특성)

  • Park, Soyoung;Yi, Yong Min;Yoon, Han-Sam;Sung, Kijune
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.265-275
    • /
    • 2012
  • As climate change is becoming a growing concern and the importance of water management is increasing, the retention of carbon and nutrients in wetland soils including inland and coastal area has become important. In this study, retention characteristics of organic matter and nutrients of coastal sediment and soils in different types of wetlands such as constructed wetland, natural (inland marsh, estuary, tidal flat) wetlands were investigated. A correlation analysis was also performed to understand the relationship among organic matter properties, nutrient concentrations and soil texture of wetland soils. The degree of retention of organic matter and nitrogen in wetland soils varied with the wetland type. Inland wetlands retain more nitrogen than estuary or coastal wetlands, and natural wetlands retain more organic matter and nitrogen than constructed ones. Coastal sediments in a bay area where seawater circulation is restricted have more nutrients than those in estuary or tidal flats where seawater circulates well. The results showed that the sediment chemical oxygen demand has a high correlation with the total organic carbon and the total nitrogen in the studied area.