• Title/Summary/Keyword: Total rainfall

Search Result 892, Processing Time 0.038 seconds

A Study on Designation Potential as Ramsar Site and Management Method of Massive Scale of Wetland - A Case of Jang Hang Estuary Wetland, Han River, Korea - (대규모 습지의 Ramsar Site 지정 가능성 검토 및 관리방안 연구 - 한강하류 장항습지를 대상으로 -)

  • Yeum, Jung-Hun;Han, Bong-Ho;Lee, Kyong-Jae
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.3
    • /
    • pp.249-257
    • /
    • 2010
  • The purpose of this paper is to weigh the possibility of endangered Jang-hang wetland at the estuary of Han River to be included on the Ramsar List of Wetlands of International Importance and come up with ways to manage the wetland depending on its biotope patterns. The target area is located between Gimpo bridge and Isanpo I.C. with about $2.7km^2$ area. Through the analysis of RIS(Information Sheet for Ramsar Wetlands), it was known that the wetland is located on the sedimentary topography and formed as a result of sediment at the estuary of the river owing to the concentration of rainfall during summer. The vegetation environment in the area is divided into brackish water and fresh water areas depending on salinity. Rhizosphere soil(RS) of the area was analyzed to be Silt loam while bottom RS to be Sand loam. The plant ecology was composed of 52 families 135 species and 11 varieties and 146 types. Among indigenous species found are Salix koreensis, Phragmites communis and Miscanthus sacchariflorus. The analyzed results of the actual vegetation showed that willow community accounts for 37% of the area and rice field is 13.5%. As for animal ecology, total of 62 species and 25,977 individual wild birds were observed. After comparing and analyzing the RIS we compiled with the Ramsar Site designation standards, it turns out that the Jang-hang wetland meets criteria 1(biographic region), criteria 2,3 and 4(species and ecological communities) and criteria 5 and 6(water birds). Thus, Jang-hang wetland is eligible for the Ramsar site. As a result of establishing and evaluating the biotope types for setting management areas, Jang-hang wetland has a total of 13 different types, and the grade I represents 75.4% of the area while the grade III 0.8% of the land status. We categorized four management zones for the wetland depending on the biotope patterns - preservation, restoration, use and buffer zones and suggested management methods for each zone.

Fish Fauna and Ecological Characteristics of Dark Chub (Zacco temminckii) Population in the Mid-Upper Region of Gam Stream (감천 중 ${\cdot}$ 상류역의 어류상과 갈겨니 (Zacco temminckii) 개체군의 생태학적 특성)

  • Seo, Jin-Won
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.2 s.112
    • /
    • pp.196-206
    • /
    • 2005
  • The fish community in the mid-upper region of Gam Stream was examined seasonally from 2001 to 2003 in order to perform an environmental impact assessment prior to a construction of Gamcheon Multipurpose Dam. Additional investigation was conducted in August 2004 to confirm the fish fauna reported and to examine the ecological characteristics of Zacco temminckii population. The total number of fish caught from the study sites was 1,081 fish representing 5 families 14 species. There were 6 Korean endemic species including Coreoleuciscus splendidus, Squalidus gracilis majimae, Microphysogobio yaluensis, Liobagrus mediadiposalis, Coreoperca herzi and Odontobutis platycephala, but no endangered or vulnerable species were found. Length-weight relation, condition factor (K) and relative condition factor (Kn) of Zacco temminckii were compared by the study sites and stream. The equations based on length-weight relation in Buhang and Gam Streams were TW\;=\;0.000004TL^{3.2357}$ and TW\;=\;0.000002TL^{3.3566}$, respectively indicating the fish in Gam Stream became more rotund as length increases. The condition factor (K) and relative condition factor (Kn) against total length of Zacco temminckii at two streams indicated that the fish (>70 mm) in Cam Stream (mean K and Kn= 1.116, 1.21 respectively) had better nutritional condition than those in Buhang Stream (mean K and Ln = 1.046, 1.14 respectively). The results were corresponded with natural disturbances such as drought and intensive rainfall from 2001 to 2003 followed by human activities such as stream repair works. Therefore, it is considered to perform environmental impact assessment with not only confirmation of fish composition but also examination of ecological characteristics in population- level.

Evaluation of Internal Phosphorus Loading through the Dynamic Monitoring of Dissolved Oxygen in a Shallow Reservoir (수심이 얕은 저수지에서 용존산소 동적 모니터링을 통한 인 내부부하 평가)

  • Park, Hyungseok;Choi, Sunhwa;Chung, Sewoong;Ji, Hyunseo;Oh, Jungkuk;Jun, Hangbae
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.553-562
    • /
    • 2017
  • In these days, agricultural reservoirs are considered as a useful resource for recreational purposes, tour and cultural amenity for vicinity communities as well as irrigation water supply. However, many of the agricultural reservoirs are showing a eutrophic or hyper-eutrophic state and high level of organic contamination. In particular, about 44.7% of the aged agricultural reservoirs that constructed before 1945 exceed the water quality criteria for irrigational water use. In addition to external loading, internal nutrient loading from bottom sediment may play an important role in the nutrient budget of the aged reservoirs. The objectives of this study were to characterize variations of thermal structure of a shallow M reservoir (mean depth 1.7 m) and examine the potential of internal nutrient loading by continuous monitoring of vertical water temperature and dissolved oxygen (DO) concentration profiles in 2015 and 2016. The effect of internal loading on the total loading of the reservoir was evaluated by mass balance analysis. Results showed that a weak thermal stratification and a strong DO stratification were developed in the shallow M Reservoir. And, dynamic temporal variation in DO was observed at the bottom of the reservoir. Persistent hypoxic conditions (DO concentrations less than 2 mg/L) were established for 87 days and 98 days in 2015 and 2016, respectively, during the no-rainy summer periods. The DO concentrations intermittently increased during several events of atmospheric temperature drop and rainfall. According to the mass balance analysis, the amount of internal $PO_4-P$ loading from sediment to the overlying water were 37.9% and 39.7% of total loading during no-rainy season in 2015 and 2016, respectively on August when algae growth is enhanced with increasing water temperature. Consequently, supply of DO to the lower layer of the reservoir could be effective countermeasure to reduce nutrient release under the condition of persistent DO depletion in the bottom of the reservoir.

Temporal and Spatial Variation Analysis of Suspended Solids, Ionic Contents, and Habitat Quality in the Woopo Wetland Watershed (우포늪 수계에서 부유물, 이온농도 및 서식지 특성에 대한 시 ${\cdot}$ 공간적 변이 분석)

  • Bae, Dae-Yeul;Choi, Ji-Woong;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.498-507
    • /
    • 2006
  • The main objective of present study was to evaluate how seasonal rainfall influenced natural habitat conditions of 10 metric habitat variables along with ionic conditions and suspended solids in the Woopo Wetland during August 2002-July 2003. Largest spatial variabilities in total suspended solids (TSS) occurred during the summer monsoon and the inorganic suspended solids (ISS), expressed as a inorganic proportion of total solids, showed linearly increasing trend from the upstream to downstream. This phenomenon was mainly attributed to counter flow of turbid water from the main Nakdong-River. During the flooding, ISS : TSS ratio showed large increases (92%) in the downstream than the upstream (43%). For this reason, transparency declined (mean=0.13 m, range=0.08-0.21 m) largely in the downstream reach and thus, chlorophyll-a concentration showed low values (range: $4.2-8.6\;{\mu}g\;L^{-1}$), indicating a direct influence on primary productivity or algal growth by inorganic turbidity. In the 2nd survey, ISS averaged 4.0 mg $L^{-1}$ (3.3-4.8 mg $L^{-1}$), thus the ISS decreased by 14 fold, compared to the ISS in the 1st survey during the flooding, while organic suspended solids (OSS) values were greater than those of ISS, indicating a dominance of organic solids. This condition was similar to solid contents in the 3rd survey, but showed a large difference compared to the 4th survey during the growing season. Habitat health assessments, based on 10 metric habitat variables, showed that QHEI values were greatest in the growing season (May) than any other seasons and largest spatial variations occurred in the 2nd survey. Overall, dataset suggest that seasonal episodic flooding during the monsoon may largely contribute nutrient cycling and sediment contents in the Woopo Wetland and Topyung Stream.

The Concentration and Input/Output of Nitrogen and Phosphorus in Paddy Fields (논에서의 질소 및 인의 농도와 유출입)

  • Shin, Dong-Seok;Kwun, Soon-Kuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.9 no.2
    • /
    • pp.133-141
    • /
    • 1990
  • For the purpose of evaluating nutrient loadings into rivers and lakes from agricultural land, especially from paddy fields and also nutrient degradation in drainage channels, the Total Kjeldahl Nitrogen(TKN) and the Total Phosphorus(TP) were investigated in 29.5 ha. paddy fields in Hwa-Sung, Kyong-Ki, Korea, during the period from May 8, 1989 to Sep. 27, 1989. The results of the study can be su㎜arized as follows : 1. Annual inputs into paddy fields were 180 N-kg/ha 46 P-kg/ha. by fertilization, and 15.0 TKN-kg/ha. 10.0 TP-kg/ha. by irrigation, 8.0 TKN-kg/ha. 0.34 TP-kg/ha. by rainfall respectively. The amount of nutrient involved in surface runoff from paddies was 39.0 TKN-kg/ha. 9.2 TP-kg/ha. and in seepage 7.5 TKN-kg/ha. 2.1 TP-kg/ha. respectively 2. In WS1 stream(reach length equals 950m), nutrients decreased 0.31 TKN-mg/L/km, 0.01 TP-mg/L/km and in WS2 stream (reach length equals 750m) which are more meandering and undulating than WS1, the nutrients decreased 0.84 TKN-mg/L/km, 0.11 TP-mg/L/km. From these results, it was concluded that low stream velocity due to meandering and undulation promotes more degradation of nutrient concentrations. 3. For the purpose of decreasing nutrient loads from paddy fields, the amount of fertilizer used needs to be controlled, irrigation weirs need to be constructed in the drainage channels to delay the transportation of nutrients by decelerating the stream velocity and plants such as plantain-lily need to be cultivated in the channel to consume nutrients and therefore enlarge chances of self-purification.

  • PDF

Effects of Environmental Factors on Phytoplankton Succession and Community Structure in Lake Chuncheon, South Korea (환경요인이 춘천호의 식물플랑크톤 천이 및 군집구조에 미치는 영향)

  • Baek, Jun-Soo;Youn, Seok-Jea;Kim, Hun-Nyun;Sim, Youn-Bo;Yoo, Soon-Ju;Im, Jong-Kwon
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.2
    • /
    • pp.71-80
    • /
    • 2019
  • Effects of environmental factors on phytoplankton succession and community structure were studied in Lake Chuncheon located in Bukhan River, South Korea. The data were sampled at three sites such as CC1 (lower side), CC2 (middle side), and CC3 (upper side of Lake Chuncheon) from 2014 to 2017. The annual average precipitation in Lake Chuncheon was 992 mm during the study period (2014~2017), and the annual precipitation was lower than 800 mm in 2014 and 2015. The annual average water temperature, total phosphorus (TP), and total nitrogen (TN) ranged from 17.0 to $21.1^{\circ}C$, 0.012 to $0.019mg\;L^{-1}$, and 1.272 to $1.922mg\;L^{-1}$, respectively. The TN concentration was relatively high in 2015 compared with the other study years, as a drought continued from 2014 to 2015. When comparing the correlation between precipitation and environmental factors, water temperature (p<0.01) and TP(p<0.05) showed positive correlations with rainfall. The average numbers of phytoplankton cells by branch were 2,094, 2,182, and $3,108cells\;mL^{-1}$ in CC1, CC2, and CC3, respectively. CC3 is considered advantageous for phytoplankton growth, even in small pollution sources due to low water depth. As a result of analyzing the relationship between precipitation and phytoplankton, the correlation between the two was shown to be high for 2016 (p<0.01) and 2017 (p<0.05), which is when precipitation was high. However, the correlation was not clear to 2014 and 2015. The relationship between water temperature and phytoplankton indicated a negative correlation with diatoms (p<0.01), yet positive correlations with green algae (p<0.01) and cyanobacteria (p<0.01). Diatoms increased in spring and autumn, which are characterized by low water temperature, and green algae and cyanobacteria increased in summer, when the water temperature is high. Our findings provide a scientific basis for characteristics of phytoplankton and water quality and management at the Lake Chuncheon.

Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III) (벼생유기간중의 논에서의 분석소비에 관한 연구(II))

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1775-1782
    • /
    • 1969
  • The results of the study on the consumptine use of irrigated water in paddy fields during the growing season of rice plants are summarized as follows. 1. Transpiration and evaporation from water surface. 1) Amount of transpiration of rice plant increases gradually after transplantation and suddenly increases in the head swelling period and reaches the peak between the end of the head swelling poriod and early period of heading and flowering. (the sixth period for early maturing variety, the seventh period for medium or late maturing varieties), then it decreases gradually after that, for early, medium and late maturing varieties. 2) In the transpiration of rice plants there is hardly any difference among varieties up to the fifth period, but the early maturing variety is the most vigorous in the sixth period, and the late maturing variety is more vigorous than others continuously after the seventh period. 3) The amount of transpiration of the sixth period for early maturing variety of the seventh period for medium and late maturing variety in which transpiration is the most vigorous, is 15% or 16% of the total amount of transpiration through all periods. 4) Transpiration of rice plants must be determined by using transpiration intensity as the standard coefficient of computation of amount of transpiration, because it originates in the physiological action.(Table 7) 5) Transpiration ratio of rice plants is approximately 450 to 480 6) Equations which are able to compute amount of transpiration of each variety up th the heading-flowering peried, in which the amount of transpiration of rice plants is the maximum in this study are as follows: Early maturing variety ; Y=0.658+1.088X Medium maturing variety ; Y=0.780+1.050X Late maturing variety ; Y=0.646+1.091X Y=amount of transpiration ; X=number of period. 7) As we know from figure 1 and 2, correlation between the amount evaporation from water surface in paddy fields and amount of transpiration shows high negative. 8) It is possible to calculate the amount of evaporation from the water surface in the paddy field for varieties used in this study on the base of ratio of it to amount of evaporation by atmometer(Table 11) and Table 10. Also the amount of evaporation from the water surface in the paddy field is to be computed by the following equations until the period in which it is the minimum quantity the sixth period for early maturing variety and the seventh period for medium or late maturing varieties. Early maturing variety ; Y=4.67-0.58X Medium maturing variety ; Y=4.70-0.59X Late maturing variety ; Y=4.71-0.59X Y=amount of evaporation from water surface in the paddy field X=number of period. 9) Changes in the amount of evapo-transpiration of each growing period have the same tendency as transpiration, and the maximum quantity of early maturing variety is in the sixth period and medium or late maturing varieties are in the seventh period. 10) The amount of evapo-transpiration can be calculated on the base of the evapo-transpiration intensity (Table 14) and Tablet 12, for varieties used in this study. Also, it is possible to compute it according to the following equations with in the period of maximum quantity. Early maturing variety ; Y=5.36+0.503X Medium maturing variety ; Y=5.41+0.456X Late maturing variety ; Y=5.80+0.494X Y=amount of evapo-transpiration. X=number of period. 11) Ratios of the total amount of evapo-transpiration to the total amount of evaporation by atmometer through all growing periods, are 1.23 for early maturing variety, 1.25 for medium maturing variety, 1.27 for late maturing variety, respectively. 12) Only air temperature shows high correlation in relation between amount of evapo-transpiration and climatic conditions from the viewpoint of Korean climatic conditions through all growing periods of rice plants. 2. Amount of percolation 1) The amount of percolation for computation of planning water requirment ought to depend on water holding dates. 3. Available rainfall 1) The available rainfall and its coefficient of each period during the growing season of paddy fields are shown in Table 8. 2) The ratio (available coefficient) of available rainfall to the amount of rainfall during the growing season of paddy fields seems to be from 65% to 75% as the standard in Korea. 3) Available rainfall during the growing season of paddy fields in the common year is estimated to be about 550 millimeters. 4. Effects to be influenced upon percolation by transpiration of rice plants. 1) The stronger absorbtive action is, the more the amount of percolation decreases, because absorbtive action of rice plant roots influence upon percolation(Table 21, Table 22) 2) In case of planting of rice plants, there are several entirely different changes in the amount of percolation in the forenoon, at night and in the afternoon during the growing season, that is, is the morning and at night, the amount of percolation increases gradually after transplantation to the peak in the end of July or the early part of August (wast or soil temperature is the highest), and it decreases gradually after that, neverthless, in the afternoon, it decreases gradually after transplantation to be at the minimum in the middle of August, and it increases gradually after that. 3) In spite of the increasing amount of transpiration, the amount of daytime percolation decreases gadually after transplantation and appears to suddenly decrease about head swelling dates or heading-flowering period, but it begins to increase suddenly at the end of August again. 4) Changs of amount of percolation during all growing periods show some variable phenomena, that is, amount of percolation decreases after the end of July, and it increases in end August again, also it decreases after that once more. This phenomena may be influenced complexly from water or soil temperature(night time and forenoon) as absorbtive action of rice plant roots. 5) Correlation between the amount of daytime percolation and the amount of transpiration shows high negative, amount of night percolation is influenced by water or soil temperature, but there is little no influence by transpiration. It is estimated that the amount of a daily percolation is more influenced by of other causes than transpiration. 6) Correlation between the amount of night percoe, lation and water or soil temp tureshows high positive, but there is not any correlation between the amount of forenoon percolation or afternoon percolation and water of soil temperature. 7) There is high positive correlation which is r=+0.8382 between the amount of daily percolation of planting pot of rice plant and amount and amount of daily percolation of non-planting pot. 8) The total amount of percolation through all growin. periods of rice plants may be influenced more from specific permeability of soil, water of soil temperature, and otheres than transpiration of rice plants.

  • PDF

Studies on the Cutting Managemente of Pasture during the Mid Summer Season I. Effect of cutting management on tall fescue dominated pasture (고온기 초지의 예취관리에 관한 연구 I. 고온기 예취방법이 tall fescue 우점초지의 재생 , 잡초발생 및 수량에 미치는 영향)

  • Seo, S.;Han, Y.C.;Park, M.S.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.1
    • /
    • pp.22-32
    • /
    • 1985
  • Optimum pasture management during the summer season is an important factor to maintain good regrowth and persistence of pasture in Korea. This experiment was carried out to investigate the effects of the cutting management on the dead plant, weed appearance, regrowth and carbohydrate reserves in stubble, and dry matter yield of tall fescue dominated pasture during the mid summer season. For the test, a split plot design with 4 replications was treated with 2 different the third cutting times (July 12 and Aug. 4) as the mainplots, and 3 different cutting heights (3, 6 and 9 cm) at the third cut as the subplots, and the experiment was done at the experimental field of the Livestock Experiment Station, in Suweon, 1984. The results obtained are summarized as follows: 1. Considering the meteorological conditions during the experimental period, the temperature was a little higher by $2^{\circ}C$ than that of average year, especially the first and second decade of August were high. And the precipitation of 1984 tended to be low when compared with the average year. 2. Temperature of soil surface and underground tended to increase by $1-3^{\circ}C$ as the stubble height was low during the summer season. 3. Regrowth leaf length and leaf area after the third cut increased significantly with the high cutting height at the third cut. 4. A significant higher total nonstructural carbohydrate (TNC) content in stubble after the third cut was observed in the high stubble cut on July 12. The results indicate that the high stubble height reserves more carbohydrates for early regrowth stage after the third cut when compared with the low stubble. On Aug. 4, however, the recovery of TNC contents after the third cut was not effective due to high temperature and rainfall. 5. The percentage of dead plant after the third cut was found to be high with the low cutting height during the mid summer season (p<0.05). 6. With the low stubble height on July 12 cut, it was appeared that the percentage of weed was significantly increased (p<0.05), and main weeds appeared after the third cut were Echinochloa crusgalli>Digitaria sanguinalis>Cyperus iria>Rumex crispus, and so on. In case of cut on Aug. 4, weed appearance was no difference at three cutting heights. 7. Dry matter yield at the third cut was increased in the plot of cutting on Aug. 4 and stubble height (p<0.05). However, yields at the fourth and fifth cut were increased with high stubble height (p<0.05), regardless of harvest time. 8. In total dry matter yield after the third cut, there was no significant difference between the cutting time and forage yield. However, total yield on July 12 was increased with the high stubble height (p<0.05). 9. From the above results, it is suggested that the 9 cm cutting height during the mid summer season is the most effective for good regrowth, weed control and forage yield of tall fescue dominated pasture.

  • PDF

Regional Development And Dam Construction in Korea (한국의 지역개발과 댐건설)

  • 안경모
    • Water for future
    • /
    • v.9 no.1
    • /
    • pp.38-42
    • /
    • 1976
  • Because of differences in thoughts and ideology, our country, Korea has been deprived of national unity for some thirty years of time and tide. To achieve peaceful unification, the cultivation of national strength is of paramount importance. This national strength is also essential if Korea is to take rightful place in the international societies and to have the confidence of these societies. However, national strength can never be achieved in a short time. The fundamental elements in economic development that are directly conducive to the cultivation of national strength can be said to lie in -a stable political system, -exertion of powerful leadership, -cultivation of a spirit of diligence, self-help and cooperation, -modernization of human brain power, and -establishment of a scientific and well planned economic policy and strong enforcement of this policy. Our country, Korea, has attained brilliant economic development in the past 15 years under the strong leadership of president Park Chung Hee. However, there are still many problems to be solved. A few of them are: -housing and home problems, -increasing demand for employment, -increasing demand for staple food and -the need to improve international balance of payment. Solution of the above mentioned problems requires step by step scientific development of each sector and region of our contry. As a spearhead project in regional development, the Saemaul Campaign or new village movement can be cited. The campaign is now spreading throughout the country like a grass fire. However, such campaigns need considerable encouragement and support and the means for the desired development must be provided if the regional and sectoral development program is to sucdceed. The construction of large multipurpose dams in major river basin plays significant role in all aspects of national, regional and sectoral development. It ensures that the water resource, for which there is no substitute, is retained and utilized for irrigation of agricultural areas, production of power for industry, provision of water for domestic and industrial uses and control of river water. Water is the very essence of life and we must conserve and utilize what we have for the betterment of our peoples and their heir. The regional and social impact of construction of a large dam is enormous. It is intended to, and does, dras tically improve the "without-project" socio-economic conditions. A good example of this is the Soyanggang multipurpose dam. This project will significantly contribute to our national strength by utilizing the stored water for the benefit of human life and relief of flood and drought damages. Annual average precipitation in Korea is 1160mm, a comparatively abundant amount. The catchment areas of the Han River, Keum River, and Youngsan River are $62,755\textrm{km}^2$, accounting for 64% of the national total. Approximately 62% of the national population inhabits in this area, and 67% of the national gross product comes from the area. The annual population growth rate of the country is currently estimated at 1.7%, and every year the population growth in urban area increases at a rising rate. The population of Seoul, Pusan, and Taegu, the three major cities in Korea, is equal to one third of our national total. According to the census conducted on October 1, 1975, the population in the urban areas has increased by 384,000, whereas that in rural areas has decreased by 59,000,000 in the past five years. The composition of population between urban and rural areas varied from 41%~59% in 1959 to 48%~52% in 1975. To mitigate this treand towards concentration of population in urban areas, employment opportunities must be provided in regional and rural areas. However, heavy and chemical industries, which mitigate production and employment problems at the same time, must have abundant water and energy. Also increase in staple food production cannot be attained without water. At this point in time, when water demand is rapidly growing, it is essential for the country to provide as much a reservoir capacity as possible to capture the monsoon rainfall, which concentarated in the rainy seaon from June to Septesmber, and conserve the water for year round use. The floods, which at one time we called "the devil" have now become a source of immense benefit to Korea. Let me explain the topographic condition in Korea. In northern and eastern areas we have high mountains and rugged country. Our rivers originate in these mountains and flow in a general southerly or westerly direction throught ancient plains. These plains were formed by progressive deposition of sediments from the mountains and provide our country with large areas of fertile land, emminently suited to settlement and irrigated agricultural development. It is, therefore, quite natural that these areas should become the polar point for our regional development program. Hower, we are fortunate in that we have an additional area or areas, which can be used for agricultural production and settlement of our peoples, particularly those peoples who may be displaced by the formation of our reservoirs. I am speaking of the tidelands along the western and southern coasts. The other day the Ministry of Agriculture and Fishery informed the public of a tideland reclamation of which 400,000 hectares will be used for growing rice as part of our national food self-sufficiency programme. Now, again, we arrive at the need for water, as without it we cannot realize this ambitious programme. And again we need those dams to provide it. As I mentioned before, dams not only provide us with essential water for agriculture, domestic and industrial use, but provide us with electrical energy, as it is generally extremely economical to use the water being release for the former purposes to drive turbines and generators. At the present time we have 13 hydro-electric power plants with an installed capacity of 711,000 kilowatts equal to 16% of our national total. There are about 110 potential dams ites in the country, which could yield about 2,300,000 kilowatts of hydro-electric power. There are about 54 sites suitable for pumped storage which could produce a further 38,600,000 kilowatts of power. All available if we carefully develop our water resources. To summarize, water resource development is essential to the regional development program and the welfare of our people, it must proceed hand-in-hand with other aspects of regional development such as land impovement, high way extension, development of our forests, erosion control, and develop ment of heavy and chemical industries. Through the successful implementation of such an integrated regional development program, we can look forward to a period of national strength, and due recognition of our country by the worlds societies.

  • PDF

Seasonal Variation of Water Quality in a Shallow Eutrophic Reservoir (얕은 부영양 저수지의 육수학적 특성-계절에 따른 수질변화)

  • Kim, Ho-Sub;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.180-192
    • /
    • 2004
  • This study was carried out to assess the seasonal variation of water quality and the effect of pollutant loading from watershed in a shallow eutrophic reservoir (Shingu reservoir) from November 2002 to February 2004, Stable thermocline which was greater than $1^{\circ}C$ per meter of the water depth formed in May, and low DO concentration (< 2 mg $O_2\;L^{-1}$) was observed in the hypolimnion from May to September, 2003. The ratio of euphotic depth to mixing depth ($Z_{eu}/Z_{m}$) ranged 0.2 ${\sim}$ 1.1, and the depth of the mixed layer exceeded that of the photic layer during study period, except for May when $Z_{eu}$ and $Z_{m}$ were 4 and 4.3 m, respectively. Most of total nitrogen, ranged 1.1 ${\sim}$ 4.5 ${\mu}g\;N\;L^{-1}$, accounted for inorganic nitrogen (Avg, 58.7%), and sharp increase of $NH_3$-N Hand $NO_3$-N was evident during the spring season. TP concentration in the water column ranged 43.9 ${\sim}$ 126.5 ${\mu}g\;P\;L^{-1}$, and the most of TP in the water column accounted for POP (Avg. 80%). During the study period, DIP concentration in the water column was &;lt 10 ${\mu}g\;P\;L^{-1}$ except for July and August when DIP concentration in the hypolimnion was 22.3 and 56.7 ${\mu}g\;P\;L^{-1}$, respectively. Increase of Chl. a concentration observed in July (99 ${\mu}g\;L^{-1}$) and November 2003 (109 ${\mu}g\;L^{-1}$) when P loading through two inflows was high, and showed close relationship with TP concentration (r = 0.55, P< 0.008, n = 22). Mean Chl. a concentration ranged from 13.5 to 84.5 mg $L^{-1}$ in the water column, and the lowest and highest concentration was observed in February 2004 (13.5 ${\pm}$ 1.0 ${\mu}g\;L^{-1}$) and November 2003 (84.5 ${\pm}$29.0 ${\mu}g\;L^{-1}$), respectively. TP concentration in inflow water increased with discharge (r = 0.69, P< 0.001), 40.5% of annual total P loading introduced in 25 July when there was heavy rainfall. Annual total P loading from watershed was 159.0 kg P $yr^{-1}$, and that of DIP loading was 126.3 kg P $yr^{-1}$ (77.7% of TP loading. The loading of TN (5.0ton yr-1) was 30 times higher than that of TP loading (159.0 kg P yr-1), and the 78% of TN was in the form of non-organic nitrogen, 3.9 ton $yr^{-1}$ in mass. P loading in Shingu reservoir was 1.6 g ${\cdot}$ $m^{-2}$ ${\cdot}$ $yr^{-1}$, which passed the excessive critical loading of Vollenweider-OECD critical loading model. The results of this study indicated that P loading from watershed was the major factor to cause eutrophication and temporal variation of water quality in Shingu reservoir Decrease by 71% in TP loading (159 kg $yr^{-1}$) is necessary for the improvement of mesotrophic level. The management of sediment where tine anaerobic condition was evident in summer, thus, the possibility of P release that can be utilized by existing algae, may also be considered.