• Title/Summary/Keyword: Total rainfall

Search Result 892, Processing Time 0.034 seconds

Risk Assessment of the Road Cut Slopes in Gyeoungnam based on Multiple Regression Analysis (다중회귀분석을 통한 경남 지방도로 절취사면의 안정성평가)

  • Kang, Tae-Seung;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.393-404
    • /
    • 2007
  • The purpose of this study is to capture the essentials in survey and evaluation scheme which are able to assess the hazard of a rock slope systematically. Statistical analysis are performed on slope instability parameters related to failure of the rock slope. As the slope instability parameters, twelve survey items are considered such as tension crack, surface deformation, deformation of retaining structures, volume of existing failures, angles between strike of discontinuity and strike of cut slope face, angles between dip of discontinuity and dip of cut slope face, discontinuity condition, cut slope angle, rainfall or ground water level, excavation condition, drainage condition, reinforcement. A total of 233 road cut slopes located in Gyeongnam were considered. The stability of the road cut slopes were evaluated by estimating the slope instability index(SII) and corresponding stability rank. 126 rock slopes were selected to analyze statistical relation between SII and slope instability parameters. The multiple regression analysis was applied to derive statistical models which are able to predict the SII and corresponding slope stability rank. Also, its applicability was explored to predict the slope failures using the variables of slope instability parameters. The results obtained in this study clearly show that the methodology given in this paper have strong capabilities to evaluate the failures of the road cut slope effectively.

Effect of Application of Swine Slurry on Productivity of Sorghum × Sorghum Hybrid and Soil Environment in Reclaimed Land (간척지에서 돈분액비 시용이 수수 × 수수 교잡종의 생산성 및 토양환경에 미치는 영향)

  • Choi, Ki-Choon;Jung, Min-Woong;Cho, Nam-Chul;Park, Hyung-Soo;Yoon, Sei-Hyung;Kim, Jong-Geun;Song, Chae-Eun;Choi, Eun-Min;Kim, Cheon-Man;Lim, Young-Chul
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.2
    • /
    • pp.159-166
    • /
    • 2011
  • This experiment was carried out to investigate the effect of application of swine slurry (SS) and slurry composting-biofilteration liquid fertilizer (SCB) on productivity of sorghum${\times}$sorghum hybrid (SSH) and soil environment in reclaimed land of Sukmoon in Korea. Dry matter (DM) yields of SSH in the treatments of SS and chemical fertilizer (CF) were higher than those of in SCB treatment in reclaimed land, but DM yields in SS and CF did not show a significant difference as compared to SCB. Nutritive values of SSH were not different among CF, SS and SCB. In soil samples collected at the end of the experiment, the concentration of organic matter was significantly increased by SS and SCB as compare to that at the beginning of the experiment (P<0.05), whereas the concentration of total nitrogen was not affected by SS and SCB. To investigate the moisture content of soil, the soils were collected from three layers; surface (0~5 cm), intermediate (10~15 cm), and deep (20~25 cm) layer. The moisture contents of soils increased according to the soil depth and the soil moisture was immediately affected by the amount of rainfall. Therefore, we suggest that the cultivation of SSH using SS in reclaimed land is possible and that additional nitrogen fertilizer was surely applied in case of application of SCB to cultivate SSH.

A Study on Feasibility of Cloud Seeding in Korea (한반도에서의 인공증우 가능성에 대한 연구)

  • Chung, Kwan-Young;Eom, Won-Geun;Kim, Min-Jeong;Jung, Young-Sun
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.621-635
    • /
    • 1998
  • The feasibility of cloud seeding in Korea is presented from analyses of precipitation, cloud amount, satellite data, and upper air data. The daily mean precipitation over Dae-Kwan-Ryong is the largest(~4.5 mm/day), while the intensity of precipitation (amount of yearly rainfall divided by the frequency of rain days) over Southern area is above 14 mm/day, which shows the largest in Korea. Both the daily mean and the intensity of precipitation over Andong area are the smallest with values of ~2.7 mm/day and ~11 mm/day, respectively. In the meanwhile, the occurrence frequency of appropriate cloud top temperature (-10'~-30') for cloud seeding over the region has a large value (~130 days/year). The precipitation patterns of the region vary with wind direction and intensity calculated from 43 AWSs(Automatic Weather Station) and the additional 7 rain guages which were installed along Northern and Southern part of the Sobaek mountain. The Sc(Stratocumulus) cloud type over Andong is frequently observed, and Cirrus and Altostratus next. From the results, it is estimated that the feasibility of cloud seeding over the area would be high if a proper strategy of cloud seeding is set up. LCL (Lifting Condensation Level) and CCL (Convective Condensation Level) have the most frequency in 1000-950 hPa being occupied 4/9 of total analysis period and in 400-500 hPa, respectively, with both small variations from season to season. The correlation between vapor mixing ratio and CCL is the highest in Summer and the lowest in Winter. It means that the height of cumulus in Summer is high with an abundant water vapor but vice versa in Winter, and that the strategy of cloud seeding should be different with seasons.

  • PDF

Relationship between Climatic Factors and Occurrence of Ectomycorrhizal Fungi in Byeonsanbando National Park (변산반도 국립공원의 외생균근성 버섯 발생과 기후 요인 과의 관계)

  • Kim, Sang-Wook;Jang, Seog-Ki
    • The Korean Journal of Mycology
    • /
    • v.44 no.4
    • /
    • pp.220-232
    • /
    • 2016
  • A survey of ectomycorrhizal fungi was performed during 2009-2011 and 2015 in Byeonsanbando National Park. A total of 3,624 individuals were collected, which belonged one division, 1 class, 5 orders, 13 families, 33 genera, 131 species. The majority of the fruiting bodies belonged to orders Agaricales, Russulales, and Boletales, whereas a minority belonged to orders Cantharellales and Thelephorale. In Agaricales, there were 6 families, 9 genera, 49 species, and 1,343 individuals; in Russulales, 1 family, 2 genera, 35 species, and 854 individuals; in Boletales, 4 families, 19 genera, 40 species, and 805 individuals; in Cantharellales, 1 family, 2 genera, 5 species, and 609 individuals; and in Thelephorale, 1 family, 1 genus, 2 species, and 13 individuals. The most frequently observed families were Russulaceae (854 individuals representing 35 species), Boletaceae (652 individuals representing 34 species), and Amanitaceae (754 individuals representing 25 species). The greatest numbers of overall and dominant species and individual fruiting bodies were observed in July. Most species and individuals were observed at altitudes of 1~99 m, and population sizes dropped significantly at altitudes of 300 m and higher. Apparently, the highest diversity of species and individuals occurred at climatic conditions with a mean temperature of $23.0{\sim}25.9^{\circ}C$, maximum temperature of $28.0{\sim}29.9^{\circ}C$, minimum temperature of $21.0{\sim}22.9^{\circ}C$, relative humidity of 77.0~79.9%, and rainfall of 300 mm or more.

Development of Land Surface Model for Soyang river basin (소양강댐 유역에 대한 지표수문모형의 구축)

  • Lee, Jaehyeon;Cho, Huidae;Choi, Minha;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.837-847
    • /
    • 2017
  • Land Surface Model (LSM) was developed for the Soyang river basin located in Korean Peninsula to clarify the spatio-temporal variability of hydrological weather parameters. Variable Infiltration Capacity (VIC) model was used as a LSM. The spatial resolution of the model was 10 km and the time resolution was 1 day. Based on the daily flow data from 2007 to 2010, the 7 parameters of the model were calibrated using the Isolated Particle Swarm Optimization algorithm and the model was verified using the daily flow data from 2011 to 2014. The model showed a Nash-Sutcliffe Coefficient of 0.90 and a correlation coefficient of 0.95 for both calibration and validation periods. The hydrometeorological variables estimated for the Soyang river basin reflected well the seasonal characteristics of summer rainfall concentration, the change of short and shortwave radiation due to temperature change, the change of surface temperature, the evaporation and vegetation increase in the cover layer, and the corresponding change in total evapotranspiration. The model soil moisture data was compared with in-situ soil moisture data. The slope of the trend line relating the two data was 1.087 and correlation coefficient was 0.723 for the Spring, Summer and Fall season. The result of this study suggests that the LSM can be used as a powerful tool in developing precise and efficient water resources plans by providing accurate understanding on the spatio-temporal variation of hydrometeorological variables.

Analysis of Paddy Rice Water Footprint under Climate Change Using AquaCrop (AquaCrop을 이용한 기후변화에 따른 미래 논벼 물발자국 변화 분석)

  • Oh, Bu-Yeong;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.45-55
    • /
    • 2017
  • Climate change causes changes in rainfall patterns, temperature and drought frequency. Climate change impact influences on water management and crop production. It is critical issue in agricultural industry. Rice is a staple cereal crop in South Korea and Korea uses a ponding system for its paddy fields which requires a significant amount of water. In addition, water supply has inter-relationship with crop production which indicates water productivity. Therefore, it is important to assess overall impacts of climate change on water resource and crop production. A water footprint concept is an indicator which shows relationship between water use and crop yield. In addition, it generally composed of three components depending on water resources: green, blue, grey water. This study analyzed the change trend of water footprint of paddy rice under the climate change. The downscaled climate data from HadGEM3-RA based on RCP 8.5 scenario was applied as future periods (2020s, 2050s, 2080s), and historical climate data was set to base line (1990s). Depending on agro-climatic zones, Suwon and Jeonju were selected for study area. A yield of paddy rice was simulated by using FAO-AquaCrop 5.0, which is a water-driven crop model. Model was calibrated by adjusting parameters and was validated by Mann-Whitney U test statistically. The means of water footprint were projected increase by 55 % (2020s), 51 % (2050s) and 48 % (2080s), respectively, from the baseline value of $767m^2/ton$ in Suwon. In case of Jeonju, total water footprint was projected to increase by 46 % (2020s), 45 % (2050s), 12 % (2080s), respectively, from the baseline value of $765m^2/ton$. The results are expected to be useful for paddy water management and operation of water supply system and apply in establishing long-term policies for agricultural water resources.

Influence of Forest Management on the Facility of Purifying Water Quality in Abies holophylla and Pinus koraiensis Watershed (I) (전나무림, 잣나무림 유역(流域)에서 산림시업(山林施業)이 산림(山林)의 수질정화기능(水質淨火機能)에 미치는 영향(影響)(I))

  • Jeong, Yongho;Park, Jae Hyeon;Kim, Kyong Ha;Lee, Bongsoo
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.3
    • /
    • pp.364-373
    • /
    • 1999
  • This study aims to clarify the effect of forest management practices(thinning and pruning) on soil physical properties and water quality to get the fundamental information on the facility of purifying water quality after forestry practices. Rainfall, throughfall, stemflow, soil and stream water were sampled at the study sites which consist of Abies holophylla and Pinus koraiensis, in Kwangnung Experimental Forest for 6 months from March 1 to August 7, 1998. Average tree height of the management site increased by 1.8m and 0.6m more than that of the non-management site in Abies holophylla and Pinus koraiensis, respectively. Increment of average D.B.H. at the management site showed 4.7cm and 1.4cm more in Abies holophylla and Pinus koraiensis compared with that at non-management sites. Coarse(less than pF2.7) and total porosities of A layer soil at the management site increased more than those at the non-management sites in both stands. Otherwise, soil bulk density resulted in being reversely. Water qualities of throughfall, stemflow and soil water were buffered more by the management practice in both.

  • PDF

A by-pass rainwater penetration sewer system for urban flooding mitigation (도시침수 저감을 위한 by-pass 빗물침투성 우수관거)

  • Lee, Bum-Sub;Ko, Keon-Ho;Kang, Ho-Yeong;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.799-807
    • /
    • 2016
  • The aim of this study is to determine and propose the by-pass rainwater sewer system in order to reduce the urban floodplain from the locality heavy rain every year during the dry season and the sinkholes in the city as well as the shortage of groundwaters due to extreme hot weather condition and urban heat island phenomenon. Heavy rain occurs more than the years of heavy rainfall probability, comparison between the place where uses the existing pipes and connect the sewer system with by-pass rain permeability and without expanding sewer pipe replacement at intersection of Gangnam station 3.07 ha at Gangnam-gu, Seoul Metropolitan area, it indicates that average of 27 million KRW (44%) maintenance cost savings and maintain existing sewer system without any other countermeasures. For the city flooded reduction, by-pass rainwater permeable rainwater pipe multiplying the probability the number of years during summer season and increase the water flow capacity during spring and fall when a small amount of rain that, it also contribute to the total amount of underground water secured through the by-pass penetration.

Distribution and Migration Characteristics of Explosive Compounds in Soil at Military Shooting Ranges in Gyeonggi Province (경기도 북부지역 군용 사격장 토양에 존재하는 화약물질 분포 및 이동 특성 조사)

  • Bae, Bumhan;Park, Jieun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.6
    • /
    • pp.17-29
    • /
    • 2014
  • A remedial investigation was conducted at five military training ranges in northern Gyeonggi province to collect information necessary for the design of on-site treatment facilities for the abatement of explosive compounds release to the environment. These information includes (i) identification of dominant explosive compounds in each range, (ii) discharge/migration routes, and (iii) contaminant distribution in particle size fraction and settling velocity of the soils. The results of investigation showed that TNT and RDX are the major contaminants but the extent of contamination varied depending on the types of military training practices and topography of the site. RDX was also detected in the subsurface soil and in the nearby stream within the training ranges, suggesting release of contaminants to streams. The median concentrations of explosives in the surface soil were less than 20 mg/kg despite several 'hot spots' in which explosives concentrations often exceeds several hundred mg/kg. The average clay contents in the soil of target area was less than 5 % compared to 12 % in the control, indicating loss of smaller particles by surface runoff during rainfall due to lack of vegetative land cover. Analysis of explosive compounds and particle size distribution showed that the amount of explosive compounds in soil particles smaller than 0.075 mm was less than 10 % of the total. Settling column tests also revealed that the quantity of explosive compounds in the liquid phase of the effluent was greater than that in the solid phase. Therefore, pre-treatment of particulate matter in surface runoff of shooting range with a simple settling basin and subsequent effluent treatment with planted constructed wetlands as polishing stage for explosives in the aqueous phase would provide the shooting ranges with a self-standing, sustainable, green solution.

Load factor of Nonpoint Source Pollutant owing to Land Use in Bangdong Reservoir Watershed (방동저수지 유역의 토지이용에 따른 비점오염 부하발생 원단위 산정)

  • Moon, Jong Pil;Kim, Tai Cheol;Ahn, Byoung Gi
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.2
    • /
    • pp.61-69
    • /
    • 1999
  • The water quality of river has been deteriorated mainly by both point source pollution and nonpoint source pollution from the watershed. Techniques to cut point source pollutants down to the level required have been developed. But, techniques of best management practices to catch the nonpoint source pollutions and to control the routine of pollutants were not successively developed. The quality of closed water system such as reservoir, lake and farm pond is irresistable to being polluted mainly by nonpoint source pollutions. In this study, the population, land use, runoff coefficient, amount of rainfall, and runoff discharge in the watershed were surveyed to investigate the characteristics of water quality such as BOD, COD, SS, T-N, and T-P. After studying the changes of water quality in the viewpoint of land use such as paddy land, residential area, upland, forest and meadow, load factors of nonpoint source pollutant were calculated in Bangdong reservoir watershed. Residential area was more severe than other land use as far as BOD, COD and SS concerned. T-N and T-P released from the paddy and upland were higher than other land use. The 45.9% of total load of nonpoint source pollution was occured during the rainy season.

  • PDF