• Title/Summary/Keyword: Total rainfall

Search Result 892, Processing Time 0.031 seconds

Analysis of the Characteristics of NPS Runoff and Application of L-THIA model at Upper Daecheong Reservoir (대청호 상류 유역의 비점오염원 유출특성 분석 및 L-THIA 모형 적용성 평가)

  • Shin, Min-Hwan;Lee, Jae-An;Cheon, Se-Uk;Lee, Yeoul-Jae;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • Generation and transportation of runoff and pollutant loads within watershed generated eutrophication at Daecheong reservoir. To improve water quality at Daecheong reservoir, the best management practices should be developed and applied at upper watersheds for water quality improvement at downstream areas. In this study, two small watersheds of upper Daecheong reservoir were selected. The Long-Term Hydrologic Impact Assessment (L-THIA) model has been widely used for the estimation of the direct runoff worldwide. To apply the L-THIA ArcView GIS model was evaluated for direct runoff and water quality estimation at small watershed. And the Web-based Hydrograph Analysis Tool (WHAT) was used for direct runoff separating from total flow. As a result, the $R^2$ (Coefficient of determination) value and Nash-Sutcliffe coefficient value for direct runoff comparison at An-nae watershed were 0.81 and 0.71, respectively. And the $R^2$ value and Nash-Sutcliffe coefficient value at Wol-oe were 0.95 and 0.93. The $R^2$ value of BOD, TOC, T-N and T-P at An-nae watershed were BOD 0.94, TOC 0.81, T-N 0.94 and T-P 0.89. And the $R^2$ value of BOD, TOC, T-N and T-P at Wol-oe watershed were BOD 0.80, TOC 0.93, T-N 0.86 and T-P 0.65. The result that estimated pollutant loadings using the L-THIA ArcView GIS model reflected well the measured pollutant loadings except for T-P in Wol-oe watershed. With L-THIA ArcView GIS model, the direct runoff and non-point pollutant (NPS) loadings in the watershed could be analyzed through simple input data such as daily rainfall, land uses, and hydrologic soil group.

Application of Remote Sensing and GIS to Flood Monitoring and Mitigation

  • Petchprayoon, Pakorn;Chalermpong, Patiwet;Anan, Thanwarat;Polngam, Supapis;Simking, Ramphing
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.962-964
    • /
    • 2003
  • In 2002 Thailand was faced with severe flooding in the North, Northeast and Central parts of the country caused by heavy rainfall of the monsoonal depression which brought about significant damages. According to the report by the Ministry of Interior and the Ministry of Agricultural and Co-operatives, the total damages were estimated to be about 6 billion bath. More than 850,000 farmers and 10 million livestock were effected. An area of 1,450,000 ha of farmland in 59 Provinces were put under water for a prolonged period. Satellite imageries were employed for mapping and monitoring the flood-inundated areas, flood damage assessment, flood hazard zoning and post-flood survey of river configuration and protection works. By integrating satellite data with other updated spatial and non-spatial data, likely flood zones can be predicted beforehand. Some examples of satellite data application to flood dis aster mitigation in Thailand during 2002 using mostly Radarsat-1 data and Landsat-7 data were illustrated and discussed in the paper. The results showed that satellite data can clearly identify and give information on the status, flooding period, boundary and damage of flooding. For comprehensive flood mitigation planning, other geo-informatic data, such as the elevation of topography, hydrological data need to be integrated. Ground truth data of the watershed area, including the water level, velocity, drainage pattern and direction were also useful for flood forecasting in the future.

  • PDF

Development of a software framework for sequential data assimilation and its applications in Japan

  • Noh, Seong-Jin;Tachikawa, Yasuto;Shiiba, Michiharu;Kim, Sun-Min;Yorozu, Kazuaki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.39-39
    • /
    • 2012
  • Data assimilation techniques have received growing attention due to their capability to improve prediction in various areas. Despite of their potentials, applicable software frameworks to probabilistic approaches and data assimilation are still limited because the most of hydrologic modelling software are based on a deterministic approach. In this study, we developed a hydrological modelling framework for sequential data assimilation, namely MPI-OHyMoS. MPI-OHyMoS allows user to develop his/her own element models and to easily build a total simulation system model for hydrological simulations. Unlike process-based modelling framework, this software framework benefits from its object-oriented feature to flexibly represent hydrological processes without any change of the main library. In this software framework, sequential data assimilation based on the particle filters is available for any hydrologic models considering various sources of uncertainty originated from input forcing, parameters and observations. The particle filters are a Bayesian learning process in which the propagation of all uncertainties is carried out by a suitable selection of randomly generated particles without any assumptions about the nature of the distributions. In MPI-OHyMoS, ensemble simulations are parallelized, which can take advantage of high performance computing (HPC) system. We applied this software framework for several catchments in Japan using a distributed hydrologic model. Uncertainty of model parameters and radar rainfall estimates is assessed simultaneously in sequential data assimilation.

  • PDF

Hydrological Variability of Lake Chad using Satellite Gravimetry, Altimetry and Global Hydrological Models

  • Buma, Willibroad Gabila;Seo, Jae Young;Lee, Sang-IL
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.467-467
    • /
    • 2015
  • Sustainable water resource management requires the assessment of hydrological variability in response to climate fluctuations and anthropogenic activities. Determining quantitative estimates of water balance and total basin discharge are of utmost importance to understand the variations within a basin. Hard-to-reach areas with few infrastructures, coupled with lengthy administrative procedures makes in-situ data collection and water management processes very difficult and unreliable. In this study, the hydrological behavior of Lake Chad whose extent, extreme climatic and environmental conditions make it difficult to collect field observations was examined. During a 10 year period [January 2003 to December 2013], dataset from space-borne and global hydrological models observations were analyzed. Terrestial water storage (TWS) data retrieved from Gravity Recovery and Climate Experiment (GRACE), lake level variations from Satellite altimetry, water fluxes and soil moisture from Global Land Data Assimilation System (GLDAS) were used for this study. Furthermore, we combined altimetry lake volume with TWS over the lake drainage basin to estimate groundwater and soil moisture variations. This will be validated with groundwater estimates from WaterGAP Global Hydrology Model (WGHM) outputs. TWS showed similar variation patterns Lake water level as expected. The TWS in the basin area is governed by the lake's surface water. As expected, rainfall from GLDAS precedes GRACE TWS with a phase lag of about 1 month. Estimates of groundwater and soil moisture content volume changes derived by combining altimetric Lake Volume with TWS over the drainage basin are ongoing. Results obtained shall be compared with WaterGap Hydrology Model (WGHM) groundwater estimate outputs.

  • PDF

Analysis of Urban Flood Damage Using SWMM5 and FLUMEN Model of Sadang Area in Korea

  • Li, Heng;Kim, Yeonsu;Lee, Seungsoo;Song, Miyeon;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.396-396
    • /
    • 2015
  • Frequent urban floods affect the human safety and economic properties due to a lack of the capacity of drainage system and the increased frequency of torrential rainfall. The drainage system has played an important role in flooding control, so it is necessary to establish the effective countermeasures considering the connection between drainage system and surface flow. To consider the connection, we selected SWMM5 model for analyzing transportation capacity of drainage system and FLUMEN model for calculating inundation depth and time variation of inundation area. First, Thiessen method is used to delineate the sub-catchments effectively base on drainage network data in SWMM5. Then, the output data of SWMM5, hydrograph of each manhole, were used to simulate FLUMEN to obtain inundation depth and time variation of inundation area. The proposed method is applied to Sadang area for the event occurred in $27^{th}$ of July, 2011. A total of 11 manholes, we could check the overflow from the manholes during that event as a result of the SWMM5 simulation. After that, FLUMEN was utilized to simulate overland flow using the overflow discharge to calculate inundation depth and area on ground surface. The simulated results showed reasonable agreements with observed data. Through the simulations, we confirmed that the main reason of the inundation was the insufficient transportation capacities of drainage system. Therefore cooperation of both models can be used for not only estimating inundation damages in urban areas but also for providing the theoretical supports of the urban network reconstruction. As a future works, it is recommended to decide optimized pipe diameters for efficient urban inundation simulations.

  • PDF

Impact of predicted climate change on groundwater resources of small islands : Case study of a small Pacific Island

  • Babu, Roshina;Park, Namsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.145-145
    • /
    • 2018
  • Small islands rely heavily on groundwater resources in addition to rainwater as the source of freshwater since surface water bodies are often absent. The groundwater resources are vulnerable to sea level rise, coastal flooding, saltwater intrusion, irregular pattern of precipitation resulting in long droughts and flash floods. Increase in population increases the demand for the limited groundwater resources, thus aggravating the problem. In this study, the effects of climate change on Tongatapu Island, Kingdom of Tonga, a small island in Pacific Ocean, are investigated using a sharp interface transient groundwater flow model. Twenty nine downscaled General Circulation Model(GCM) predictions are input to a water balance model to estimate the groundwater recharge. The temporal variation in recharge is predicted over the period of 2010 to 2099. A set of GCM models are selected to represent the ensemble of 29 models based on cumulative recharge at the end of the century. This set of GCM model predictions are then used to simulate a total of six climate scenarios, three each (2010-2039, 2040-2069, and 2070-2099) under RCP 4.5 and RCP 8.5. The impacts of predicted climate change on groundwater resources is evaluated in terms of freshwater volume changes and saltwater ratios in pumping wells compared to present conditions. Though the cumulative recharge at the end of the century indicates a wetter climate compared to the present conditions the large variability in rainfall pattern results in frequent periods of groundwater drought leading to saltwater intrusion in pumping wells. Thus for sustaining the limited groundwater resources in small islands, implementation of timely assessment and management practices are of utmost importance.

  • PDF

Understanding the Groundwater System through the Long-term Monitoring - a case Study of Gwangneung Headwater Catchment (장기모니터링을 통한 지하수계의 이해 - 광릉소유역 사례 연구)

  • Lee, Jae-Min;Woo, Nam-C.
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.51-62
    • /
    • 2012
  • Effects of climate change on groundwater system requires understanding the groundwater system in temporal and spatial scales through the long-term monitoring. In this study, the spatio-temporal variations of groundwater were analyzed through the continuous observation of water level, electrical conductivity (EC) and water temperature with automatic data-loggers and sampling in a Gwangneung catchment, Korea, for the four years from 2008 to 2011. Groundwater monitoring were performed at the nest-type wells, MW1 and MW2, located in upsteam and downstream of the catchment, respectively. During the survey period, both the total amount of annual precipitation and the frequency of concentrated rainfall have increased resulting in the elevation of runoff. Water level of MW1 showed no significant fluctuations even during the rainy season, indicating the confined groundwater system. In contrast, that of MW2 showed clear seasonal changes, indicating the unconfined system. The lag-time of temperature at both wells ranged from one to three months depending on the screened depths. Results of chemical analyses indicated that major water compositions were maintained constantly, except for the EC decreases due to the dilution effect. Values of the stable-isotope ratios for oxygen and deuterium were higher at MW2 than MW1, implying the confined system at the upstream area could be locally developed.

A Study on the Releasing Characteristics of Organic Matter and Heavy Metals and Changes of Dissolved Oxygen Concentration during Sediment Resuspension (퇴적물 재부유에 따른 유기물과 중금속 용출 및 용존산소량 변화 특성에 대한 연구)

  • Kang, Seon Gyeong;Lee, Han Saem;Lim, Byung Ran;Rhee, Dong Seok;Shin, Hyun Sang
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • The depletion of dissolved oxygen (DO) in urban streams has a profound effect on the aquatic ecosystem; however, the change in DO by resuspension of sediments and the cause have not been sufficiently investigated. In this study, the physicochemical properties (particle size, and the content of organic and heavy metals) of the sediments of an urban stream (Anyang Stream) and the characteristics of water quality changes (DO, dissolved organic carbon (DOC), dissolved nitrogen (DN), sediment oxygen demand (SOD), and adenosine triphosphate (ATP)) by sediment resuspension were investigated. The sediment content of fine particles (< 0.2 mm) increased from 36.7% to 52.7% from the upstream to the downstream, and the contents of heavy metals and organic matter of the sediment were also higher towards the downstream. The depletion of DO by resuspension was observed in the sediment at the downstream sites (P8, P9), where the fine particle content was high, and biological SOD (BSOD) was more than 88% compared to the total SOD. The increase in BSOD coincided with the increase in ATP. It was also confirmed that the depletion of DO could increase the amount of heavy metals (such as Fe, Mn, and Pb) released from the sediment. Based on the above results, it can be concluded that resuspension of sediments induces rapid water quality changes and may cause accidents, such as fish mortality, during rainfall, and such a water quality effect can be more pronounced in sediments with a high content of fine particles and organic matter and high biological activity.

Effects of Climate Change on Purple Laver Farming in Maro-hae (Jindo-gun and Haenam-gun), Republic of Korea and Countermeasures (기후변화가 마로해의 김 양식에 미치는 영향 및 대응방안)

  • Kim, Tae-Hyung;Shin, Jong-Ahm;Choi, Sang-Duk
    • The Journal of Fisheries Business Administration
    • /
    • v.52 no.2
    • /
    • pp.55-67
    • /
    • 2021
  • Global warming affects critical natural resources, one of which is the oceans that occupy 70% of the total cover of the earth. In other words, ocean warming is a subset of global warming which needs to be addressed urgently. Purple laver (pyropia spp.) is one of the most vulnerable items to climate change although it is a major export product of Korean fisheries. The purpose of this study is to analyze the causality of how climate change caused by global warming affects the increase or decrease of PLP (purple laver production). The target area for analysis was set to Maro-hae between Jindo-gun and Haenam-gun. We selected marine environmental factors and meteorologic factors that could affect PLP as variables, as well as co-integration tests to determine long-term balance, and the Granger causticity tests. As a result, PLP and marine environmental factors WT (water temperature), pH, and DO confirmed that long-term equilibrium relationships were established, respectively. However, there is only causality with WT and it is confirmed that there is only a correlation between pH and DO (dissolved oxygen). There was no long-term equilibrium relationship between PLP and HDD (heating degree days) and there is a causal effect that HDD affects PLP; however, it was less clear than that of WT. The relationship between PLP and RF (rainfall), WS (wind speed), SS (percentage of sunshine), and FF (farm facilities) was all balanced in the long term, and causality exists. Based on the results of the analysis, policy proposals were made.

Performance analysis for reduction facility of nonpoint source pollutant (비점오염원 저감장치의 성능분석)

  • Lee, Jong-Seok;Kim, Chi-Gon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.3
    • /
    • pp.207-217
    • /
    • 2019
  • This study aims at development and application of a facility that is capable of reducing pollution in water quality by reducing nonpoint source pollutants (NPSP). NPSP originated from the initial rainfall caused not only large catchment of urban area pass a river but also small watershed pass a stream. For this purpose, the performance tests carried out with the field models from the facility based on the preceding study. And the tests induced reduction efficiency of biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (T-N) and suspended solid (SS), respectively. The average reduction efficiency obtained by time interval, and the result showed an excellent reduction performance. As a result, the facility satisfied reduction efficiency of NPSP of the proposed standard by the National Institute of Environmental Research, and thus it can be used in practical applications.