• Title/Summary/Keyword: Total odd nitrogen species

Search Result 1, Processing Time 0.014 seconds

Evaluation of Photochemical Pollution during Transport of Air Pollutants in Spring over the East China Sea

  • Sadanaga, Yasuhiro;Kobashi, Tadashi;Yuba, Akie;Kato, Shungo;Kajii, Yoshizumi;Takami, Akinori;Bandow, Hiroshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.237-246
    • /
    • 2015
  • We conducted intensive observations of ozone, CO, $NO_x$ (=NO and $NO_2$), $NO_y$ (total odd nitrogen species including particulate nitrate) and total nitrate (the sum of gaseous $HNO_3$ and particulate nitrate) at Cape Hedo, Okinawa, Japan, from 19 March to 3 April, 2009, to investigate ozone production during long-range transport from the Asian continent. Ozone production efficiency (OPE) was used to evaluate photochemical ozone production. OPE is defined as the number of molecules of ozone produced photochemically during the lifetime of a $NO_x$ molecule. OPE is calculated by the ratio of the concentration increase of ozone to that of $NO_z$ ($=NO_y-NO_x$). Average OPE during observation was estimated to be $12.6{\pm}0.5$, but concentrations of ozone increased nonlinearly with those of $NO_z$. This non-linearity suggests that OPE depends on air mass origin and $NO_z$ concentrations. There were very different values of OPE for the same air mass origin, so that only the air mass origin alone does not control OPE. OPE was low when $NO_z$ concentration was high. We examined the correlation between $NO_z$ and $CO/NO_y$ ratios, which we used instead of the ratio of non-methane hydrocarbons (NMHCs) to $NO_x$. The $CO/NO_y$ ratios decreased with increasing $NO_z$ concentrations. These results indicate that competition reactions of OH with NMHCs and $NO_2$ are the rate determining steps of photochemical ozone production during long-range transport from the Asian continent to Cape Hedo, for high concentrations of nitrogen oxides.