• 제목/요약/키워드: Total Petroleum Hydrocarbons (TPH)

검색결과 48건 처리시간 0.023초

The Simultaneous Analysis of Benzene, Toluene, Ethylbenzene, o,m,p-Xylenes and Total Petroleum Hydrocarbons in Soil by GC-FID after Ultra-Sonication

  • 신호상;권오승
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권11호
    • /
    • pp.1101-1105
    • /
    • 2000
  • A simultaneous determination method of BTEX (benzene, toluene, ethylbenzene, o,m.p-xylene) and TPH (kerosene, diesel, jet fuel and bunker C) in soil with gas chromatography/flame ionization detection (GC-FID) was described. The effects of extracti on method, extraction solvent, solvent volume and extraction time on the extraction performance were studied. A sonication method was simpler and more efficient than Soxhlet or shaking methods. Sonication with 10 mL of acetone/methylene chloride (1 : 1, v/v) for 10 min was found to be optimal extraction conditions for 20 g of soil. Peak shapes and quantification of BTEX and TPH were excellent, with linear calibration curves over a wide range of 1-500 mg/L for BTEX and 10-5000 mg/L for TPH. Good reproducibilities by sonication were obtained, with the RSD values below 10%. By using about 20 g of soil, detection limits were 0.8 mg/L for BTEX and 10 mg/L for TPH. The advantages of this procedure are the use of simple and common equipment, reduced volumes of organic solvents, rapid extraction periods of less than 20 min, and simultaneous analysis of volatile and semivolatile compounds.

펜톤 산화와 토양 세정이 보강된 동전기에 의한 중금속 및 총 석유 탄화수소(TPH)로 오염된 토양의 정화 특성 (The Remediation Characteristic of Soil Contaminated with Heavy Metal and Total Petroleum Hydrocarbon (TPH) by Enhanced Electrokinetic with Fenton Oxidation and Soil Flushing Method)

  • 서석주;나소정;김정환;박주양
    • 대한토목학회논문집
    • /
    • 제34권3호
    • /
    • pp.885-893
    • /
    • 2014
  • 중금속과 총 석유 탄화수소(TPH)로 동시 오염된 복합오염 토양을 정화하기 위해 펜톤 산화와 토양 세정법에 활용되고 있는 $H_2O_2$와 sodium dodecyl surfate (SDS)를 활용하여 강화된 동전기를 연구하였다. 또한, 토양 고유의 특성 차이 및 전극액 농도에 따른 정화 효율의 영향을 확인하기 위해 토양과 농도를 달리하여 실험하였다. 인공적으로 오염시킨 토양에서 10% $H_2O_2$와 20mM SDS를 활용한 실험에서 중금속 정화 효율이 가장 높게 나타났으며, 반면에 같은 농도의 용산 토양 실험에서 토양 고유의 높은 산 완충능력으로 중금속 정화 효율이 떨어졌다. 20% $H_2O_2$와 20mM SDS으로 전극액 농도를 높인 실험을 통해 높은 전류는 토양의 pH에 영향을 주었으며, 이로 인해 중금속 정화에 영향을 미쳤다. TPH의 정화 효율의 경우 용산토양의 높은 산 완충능력과 유기물 함량으로 인해 인공적으로 오염시킨 토양에 비해 산화 효율이 저하되었다. 게다가 40mM의 sodium dodecyl surfate (SDS)의 농도가 주입될 경우, SDS의 scavenger 영향 때문에 TPH 정화에 악영향을 주었다. 토양 고유의 구성성분 및 전극액 농도가 동전기-펜톤 공정의 전기화학적 현상 및 전기삼투유량, 오염물질 정화에 매우 큰 영향을 주는 인자로 판명되었다.

Monitoring of petroleum hydrocarbon degradative potential of indigenous microorganisms in ozonated soil

  • 안영희;정해룡;;;최희철;김인수
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.152-157
    • /
    • 2003
  • Diesel-contaminated soils were ozonated for different times (0 - 900 min) and incubated for 9 wk to monitor petroleum hydrocarbons (PH)-degradative potential of indigenous microorganisms in the soils. Increased ozonation time decreased not only concentration of PH but also number of microorganisms in the soils. Microorganisms in the ozonated soils increased during 9-wk incubation as monitored by culture- and nonculture-based methods. Higher (1-2 orders of magnitude) cell number was observed by quantitative analysis of soil DNA using probes detecting genes encoding 165 rRNA(rrn), naphthalene dioxygenase (nahA), toluene dioxygenase (todC), and alkane hydroxylase (alkB) than microbial abundance estimated by culture-based methods. Such PH-degraders were relatively a few or under detection limit in 900-min ozonated soil. Further PH-removal observed during the incubation period supported the presence of PH-degraders in ozonated soils. Highest reduction (25.4%) of total PH (TPH) was observed in 180-min ozonated soil white negligible reduction was shown in 900-min ozonated soil during the period, resulting in lowest TPH-concentration in 180-min ozonated soil among the ozonated soils. Microbial community composition in 9-wk incubated soils revealed slight difference between 900-min ozonated and unozonated soils as analyzed by whole cell hybridization using group-specific rRNA-targeted oligonucleotides. Results of this study suggest that appropriate ozonation and subsequent biodegradation by indigenous microorganisms may be a cost-effective and successful remediation strategy for PH-contaminated soils.

  • PDF

미생물활성화제를 이용한 유류오염토양 복원에 관한 연구 (A Study on the Remediation using Microbial Activator from Oil-Contaminated Soil)

  • 이채영;정찬교;김종문
    • 유기물자원화
    • /
    • 제19권2호
    • /
    • pp.41-48
    • /
    • 2011
  • 본 연구에서는 미생물활성화제를 토양경작법에 적용하였을 경우 토양을 복원함에 있어 타 공법에 비해 장시간 걸리는 단점을 최소화하고, 빠른 시일 내에 친환경적으로 복원이 가능한지에 대한 타당성 조사와 더불어 석유계총탄화수소(TPH)의 저감 능력을 확인하였다. Pre-test의 개념으로 미생물활성화제의 성능과 분해 효율을 lab-test를 통해 확인하였으며, 유류오염 토양의 지표인 석유계총탄화수소(TPH)의 효과를 확인하였다. 석유계총탄화수소(TPH)의 처리 효과를 확인한 결과, 20일 정도까지는 자연분해와 미생물활성화제의 차이가 미미하게 발생하였으나, 20일 경과 후에는 처리 효과가 대조군에 비해 높게 나타나는 것을 확인할 수 있었다. 또한, 각층에 따른 제거율을 살펴본 결과, 상층 85.8 %, 중층 84.4 %의 제거율을 나타냈으나, 하층에서는 66.10 % 제거율을 나타냈다. 대조군에서 자연적으로 줄어드는 석유계총탄화수소(TPH)의 저감율이 평균 71.1 %임을 근거로 봤을 때 미생물활성화제가 하층까지 충분하게 전달되지 않은 상태로 볼 수 있었으며, 이는 토양 더미의 문제로 판단된다. 현장 실험에서는 토양 더미가 1 m 로 진행되었기 때문에 더미 높이를 0.6 m 이하로 낮추게 되면 석유계총탄화수소(TPH)의 처리효율은 더 높아질 수 있을 것으로 사료된다.

생물학적 슬러리 반응조를 이용한 PAHs 오염 퇴적오니의 처리 (Treatment of PAHs contamninated sediments using a slurry reactor)

  • 배범한;이성재;박규홍;조경숙;정연규
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 추계학술대회
    • /
    • pp.177-181
    • /
    • 2000
  • A lab-scale slurry reactor was developed for the treatment of contaminated sediments with polycyclic aromatic hydrocarbons (naphthalene, phenanthrene). In this system, range from 85 to 95% of PAHs with 2~3 rings were degraded within 11 days. Higher naphthalene degradation(94.05%) over phenanthrene degradation(87.07%) was probably due its higher solubility. Both compounds were not detected in aqueous phase after 7days and only 26.8% of naphthalene and 49.1% of phenanthrene were biodegraded. Removal TPH(Total Petroleum Hydrocarbon) concentration in solid after 11 days of treatment was 46%.

  • PDF

군기지 오염토양의 정화 방법에 대한 연구 (A Study on Remediation Methods of Contaminated Soils at Former Military Bases)

  • 양혁수;김임순;강선홍;장윤영;박세규;고재욱;김연정;박철환
    • Korean Chemical Engineering Research
    • /
    • 제52권5호
    • /
    • pp.647-651
    • /
    • 2014
  • 대량의 유류 취급과 사격, 폭파훈련으로 인한 피탄지에 중금속 물질의 발생, 많은 인원이 사용 후 발생되는 폐기물, 노후화된 시설물(구조물 포함) 등으로 인해 군부대는 환경오염사고를 야기할 수 있는 가능성을 지니고 있다. 경기도 의정부시에 위치한 5개의 반환미군기지를 대상으로 오염도를 분석하였으며, 그 결과 TPH (Total Petroleum Hydrocarbons), BTEX (Benzene, Toluene, Ethylbenzene, Xylene), 중금속에 의한 토양오염과 지하수 오염을 확인할 수 있었다. 군기지 오염토양의 정화를 위하여 토양증기추출법, 슬러핑공법, 토양경작법 및 토양세척법이 적용되었으며, 적용된 5개의 부지 모두 법적 기준에 적합하도록 정화되었다.

유류오염토양의 정화기술과 적용사례 (Remediation Technology and application case of petroleum hydrocarbon contaminated soil)

  • 이철효
    • 기술사
    • /
    • 제41권3호
    • /
    • pp.35-39
    • /
    • 2008
  • The most common soil contaminants are petroleum-based. Hydrocarbons from diesel fuel and gasoline are widespread problems, as are total petroleum hydrocarbon(TPH). There are two distinct classes of soil remediation: in-situ, or on-site, and ex-situ, or off- site. On-site cleanups are often preferred because they are cheaper. On the other hand, excavating a contaminated area and transporting it to a remote site before cleaning it can often be more complete. Ex-situ remediation also has the added bonus of taking the bulk of contaminants off-site before they can spread further. In addition, in-situ situations are limited because only the topside of the soil is accessible.

  • PDF

유류/중금속 복합오염토양 정화를 위한 다단 토양세척 효율평가 (Performance Evaluation of the Multistage Soil Washing Efficiency for Remediation of Mixed-contaminated Soil with Oil and Heavy Metals)

  • 김대호;박광진;조성희;김치경
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권2호
    • /
    • pp.33-40
    • /
    • 2017
  • In typical remediation practices, separate washing systems have to be applied to clean up the soils contaminated with both oil and heavy metals. In this study, we evaluated the efficiency of successive two-stage soil washing in removal of mixed-contaminants from soil matrix. Two-stage soil washing experiments were conducted using different combinations of chemical agent: 1) persulfate oxidation, followed by organic acid washing, and 2) Fenton oxidation, followed by inorganic acid washing. Persulfate oxidation-organic acid washing efficiently removed both organic and inorganic contaminants to meet the regulatory soil quality standard. The average removal rates of total petroleum hydrocarbons (TPH), Cu, Pb, and Zn were 88.9%, 82.2%, 77.5%, and 66.3% respectively, (S/L 1:10, reaction time 1 h, persulfate 0.5 M, persulfate:activator 3:1, citric acid 2 M). Fenton oxidation-inorganic acid washing also gave satisfactory performances to give 89%, 80.9%, 87.1%, and 67.7% removal of TPH, Cu, Pb, and Zn, respectively (S/L 1:10, reaction time 1 hr, hydrogen peroxide 0.3 M, hydrogen peroxide:activator 5:1, inorganic acid 1 M).

Investigation of Soil and Groundwater Contaminated by Gasoline and Lubricants Around a Railroad Station in S City, Korea

  • Lee, Hwan;Lee, Yoonjin
    • 한국환경보건학회지
    • /
    • 제38권6호
    • /
    • pp.529-540
    • /
    • 2012
  • Objective: This research was performed to evaluate the state of oil pollution in an area surrounding a railway station that has over 100 years of business history as a railway station in S City, Korea. The amount of polluted soil was estimated, and the target area for remediation was assessed in this study to restore the oil-polluted area. Methods: To accomplish this aim, five observation wells were installed for the sampling of groundwater, and soil was sampled at 33 points. Electric resistance studies and a trench investigation were undertaken to understand the geological conditions of the site, and the groundwater movement in this area was simulated by MODFLOW. Physiochemical analyses were conducted to determine the quality of the groundwater and the current state of oil pollution influenced by that of the soil. Results: The mean level of total petroleum hydrocarbons (TPHs) in this area was 1,059 mg/kg, and the area for remediation was determined to be 7,610 mg/kg. Levels of benzene, toluene, ethylbenzene, and xylene (BTEX) were determined to be under the legal standard. Conclusion: In terms of depth, the biggest area polluted by TPH found was between 0 and 1 m from ground level, and the affected area was 5,900 $m^3$. TPHs were not detected in groundwater. Diesel and lubricating oil were the main causes of TPH pollution at this railway station.

Application of Bioremediation to Soil Contaminated by Lubricants Around Railroad Turnouts

  • Lee, Jae-Young;Kwon, Tae-Soon;Cho, Young-Min;Kang, Hae-Suk;Jung, Woo-Sung
    • International Journal of Railway
    • /
    • 제4권1호
    • /
    • pp.1-4
    • /
    • 2011
  • In this study, the feasibility of using bioremediation to treat lubricant-contaminated soil around railroad turnouts was investigated. Lubricants used during the maintenance of railroad turnouts can drip onto the ground causing soil contamination. In the laboratory experiments, the residual TPH (Total Petroleum Hydrocarbons) concentration in soil gradually decreased after microorganisms degrading the lubricants were added. Generally, the soil around railroad turnouts is covered by a layer of ballasts. In the column experiments that were designed considering field sites, the removal efficiency of TPH was about 11% after 60 days of cultivation time. In the field experiments, microorganisms were added into the soil periodically, and finally the residual TPH concentrations were reduced to less than 1,700 mg/kg-soil on average. These results indicate that the lubricant in the contaminated soil around railroad turnouts could be efficiently removed through bioremediation method.