• 제목/요약/키워드: Total Lagrangian Finite Element

검색결과 81건 처리시간 0.229초

항공기 재료 성형시의 손상진전에 관한 연구 (A Study on the Damage Propagation of an Aircraft Material During Forming)

  • 김위대;김진희;김승조
    • 소성∙가공
    • /
    • 제4권2호
    • /
    • pp.131-140
    • /
    • 1995
  • In this paper damage propagation of a material during forming is investigated with the concept of continuum damage mechanics. An isotropic damage model based on the theory of materials of type N is adopted to describe the damage process of a ductile material with large elasto-viscoplastic deformation. The stiffness degradation of the loaded material is chosen as a damage measure. The highly nonlinear equilibrium equations are reduced to the incremental weak form and approximated by the total Lagrangian finite element method. To simulate contact condition, extended interior penalty method with modified coulomb friction law is adopted. The displacement control method along with the modified Riks' continuation technique is used to solve the incremental iterative equations. As numerical examples, upsetting problem and backward extrusion problem are simulated and the results of damage propagation and $J_2$ stress contours with and without friction are presented.

  • PDF

Nonlinear behavior of fiber reinforced cracked composite beams

  • Akbas, Seref D.
    • Steel and Composite Structures
    • /
    • 제30권4호
    • /
    • pp.327-336
    • /
    • 2019
  • This paper presents geometrically nonlinear behavior of cracked fiber reinforced composite beams by using finite element method with and the first shear beam theory. Total Lagrangian approach is used in the nonlinear kinematic relations. The crack model is considered as the rotational spring which separate into two parts of beams. In the nonlinear solution, the Newton-Raphson is used with incremental displacement. The effects of fibre orientation angles, the volume fraction, the crack depth and locations of the cracks on the geometrically nonlinear deflections of fiber reinforced composite are examined and discussed in numerical results. Also, the difference between geometrically linear and nonlinear solutions for the cracked fiber reinforced composite beams.

Hygro-thermal post-buckling analysis of a functionally graded beam

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • 제8권5호
    • /
    • pp.459-471
    • /
    • 2019
  • This paper presents post-buckling analysis of a functionally graded beam under hygro-thermal effect. The material properties of the beam change though height axis with a power-law function. In the nonlinear kinematics of the post-buckling problem, the total Lagrangian approach is used. In the solution of the problem, the finite element method is used within plane solid continua. In the nonlinear solution, the Newton-Raphson method is used with incremental displacements. Comparison studies are performed. In the numerical results, the effects of the material distribution, the geometry parameters, the temperature and the moisture changes on the post-buckling responses of the functionally graded beam are presented and discussed.

고차 판 유한요소의 기하학적 비선형 해석 (Geometrically Nonlinear Analysis of Higher Order Plate Bending Finite Element)

  • 신영식
    • 대한토목학회논문집
    • /
    • 제8권3호
    • /
    • pp.1-10
    • /
    • 1988
  • 본 연구에서는 고차 판 유한요소의 판의 기하학적 비선형 해석에의 적용성을 고찰한다. 고차판요소는 3 차원 연속체로부터 Total Lagrangian 형태로 나타낸 운동방정식을 이산화하고 고차 판이론을 도입하여 유도한다. 유한변형을 고려한 기하학적 비션형 방정식은 Newton-Raphson반복법으로 내력벡터를 선형화하여 강도매트릭스를 반복계산하여 푼다. 요소매트릭스는 shear locking 현상을 피하기 위하여 Gauss 적분법을 이용한 선택적 감차적분으로 계산한다. 여러가지 예제해석을 통하여 고차 판요소의 효율성과 정확도를 고찰하였다.

  • PDF

2차원(次元) 보 유한요소(有限要素) 비선형(非線型) 해석(解析) (A Nonlinear Analysis of Two-Dimensional Beam Finite Elements)

  • 신영식
    • 대한토목학회논문집
    • /
    • 제4권3호
    • /
    • pp.53-61
    • /
    • 1984
  • 본(本) 연구(硏究)에서는 2차원(次元) 탄성(彈性) 뼈대 구조물(構造物)의 기하학적(幾何學的) 비선형(非線型) 해석(解析)을 위하여 Total Lagrangian 방법(方法)에 의한 보 유한요소(有限要素)(NB6)의 Formulation을 보여주고 있다. 이 보 요소(要素)는 3 차원(次元) 연속체(連續體)로부터 깊은 보 가정(假定) 이용(利用)하여 유도(誘導)되며 3개(個)의 기준절점(基準節點)과 3개(個)의 상대절점(相對節點)으로 이루어진다. 보의 운동방정식(運動方程式)은 Galerkin의 가중잔차법(加重殘差法)으로 Discretization 되며 요소강도(要素剛度) 및 질량(質量)매트릭스는 Newton-Raphson 방법(方法)으로 해하중(每荷重) 단계(段階)마다 반복계산(反復計算)되어 감소적분법(減少積分法)으로 구해진다. 본(本) 연구(硏究)에서 제안(提案)되는 NB6 비선형(非線形) 보 요소(要素) 정확도(正確度)와 효율성(效率性) 고찰(考察)하기 위하여 몇 가지 예제(例題) 해석(解析)하였다.

  • PDF

수치미분을 이용한 고무의 유한요소 해석시 수렴성 연구 (A Study on the Convergency of the Finite Element Analysis of Rubber Using Numerical Differentiation Mehthod)

  • 권영두;노권택;이창섭;홍상표
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.141-153
    • /
    • 1999
  • A finite element procedure for the analysis of rubber-like hyperelastic material is developed. The volumetric incompressiblity conditions of the rubber deformation is included in the formulation by using penalty method. In this paper, the behavior of the rubber deformation is represented by hyperelastic constitutive relations based on a generalized Mooney-Rivlin model. The principle of virtual work is used to derive nonlinear finite element equation for the large displacement problem and presented in total-Lagrangian description. The finite element procedure using analytic differentiation resulted in very close solution to the result of the well known commercial packages NISAII AND ABAQUS. Numerical tests show that the results from the numerical differentiation method coincide very well with those from the analytic method and the well known commercial packages in static analysis. The convergency of rubber usingν iteration method is also discussed.

  • PDF

격막 설치에 따른 비선형 슬로싱 특성 연구 (Characteristic Analysis of Nonlinear Sloshing in Baffled Tank)

  • 이홍우;조진래
    • 대한기계학회논문집A
    • /
    • 제29권11호
    • /
    • pp.1455-1462
    • /
    • 2005
  • In this paper, we intend to introduce a nonlinear finite element method based on the fully nonlinear potential flow theory in order to simulate the large amplitude sloshing flow in two-dimensional baffled tank subject to horizontally forced excitation. The free surface is tracked by a direct time differentiation scheme with the four-step predictor-corrector time integration method. The flow velocity is accurately recovered from the velocity potential by second-order least square method. In order to maintain the finite element mesh regularity and total mass, the semi-Lagrangian surface tracking method with area conservation is applied. According to the numerical formulae, we perform the parametric experiments by varying the installation height and the opening width of baffles, in order to examine the effects of baffle on the nonlinear liquid sloshing. From the numerical results, the hydrodynamic characteristics of the large amplitude sloshing are investigated.

Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • 제15권5호
    • /
    • pp.481-505
    • /
    • 2013
  • This paper focuses on thermal post-buckling analysis of functionally graded beams with temperature dependent physical properties by using the total Lagrangian Timoshenko beam element approximation. Material properties of the beam change in the thickness direction according to a power-law function. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces and therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In this study, the differences between temperature dependent and independent physical properties are investigated for functionally graded beams in detail in post-buckling case. With the effects of material gradient property and thermal load, the relationships between deflections, critical buckling temperature and maximum stresses of the beams are illustrated in detail in post-buckling case.

Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading

  • Akbas, Seref Doguscan;Kocaturk, Turgut
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.109-125
    • /
    • 2012
  • Post-buckling behavior of Timoshenko beams subjected to uniform temperature rising with temperature dependent physical properties are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The beams considered in numerical examples are made of Austenitic Stainless Steel (316). The convergence studies are made. In this study, the difference between temperature dependent and independent physical properties are investigated in detail in post-buckling case. The relationships between deflections, thermal post-buckling configuration, critical buckling temperature, maximum stresses of the beams and temperature rising are illustrated in detail in post-buckling case.

Large deflection analysis of edge cracked simple supported beams

  • Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.433-451
    • /
    • 2015
  • This paper focuses on large deflection static behavior of edge cracked simple supported beams subjected to a non-follower transversal point load at the midpoint of the beam by using the total Lagrangian Timoshenko beam element approximation. The cross section of the beam is circular. The cracked beam is modeled as an assembly of two sub-beams connected through a massless elastic rotational spring. It is known that large deflection problems are geometrically nonlinear problems. The considered highly nonlinear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The beams considered in numerical examples are made of Aluminum. In the study, the effects of the location of crack and the depth of the crack on the non-linear static response of the beam are investigated in detail. The relationships between deflections, end rotational angles, end constraint forces, deflection configuration, Cauchy stresses of the edge-cracked beams and load rising are illustrated in detail in nonlinear case. Also, the difference between the geometrically linear and nonlinear analysis of edge-cracked beam is investigated in detail.